516 research outputs found
Universal Aspects of Gauge Field Localization on Branes in -dimensions
In this work, we study the general properties of the -vector field
localization on -brane with co-dimension . We consider a
conformally flat metric with the warp factor depending only on the transverse
extra dimensions. We employ the geometrical coupling mechanism and find an
analytical solution for the gauge field valid for any warp factor. Using
this solution we find that the only condition necessary for localization is
that the bulk geometry is asymptotically AdS. Therefore, our solution has an
universal validity for any warp factor and is independent of the particular
model considered. We also show that the model has no tachyonic modes. Finally,
we study the scalar components of the -vector field. As a general result, we
show that if we consider the coupling with the tensor and the Ricci scalar in
higher co-dimensions, there is an indication that both sectors will be
localized. As a concrete example, the above techniques are applied for the
intersecting brane model. We obtain that the branes introduce boundary
conditions that fix all parameters of the model in such a way that both
sectors, gauge and scalar fields, are confined.Comment: 26 pages, 5 figures, Accepted version for publication in JHE
Quantitative analysis of Clausius inequality
In the context of driven diffusive systems, for thermodynamic transformations
over a large but finite time window, we derive an expansion of the energy
balance. In particular, we characterize the transformations which minimize the
energy dissipation and describe the optimal correction to the quasi-static
limit. Surprisingly, in the case of transformations between homogeneous
equilibrium states of an ideal gas, the optimal transformation is a sequence of
inhomogeneous equilibrium states.Comment: arXiv admin note: text overlap with arXiv:1404.646
Large deviation approach to non equilibrium processes in stochastic lattice gases
We present a review of recent work on the statistical mechanics of non
equilibrium processes based on the analysis of large deviations properties of
microscopic systems. Stochastic lattice gases are non trivial models of such
phenomena and can be studied rigorously providing a source of challenging
mathematical problems. In this way, some principles of wide validity have been
obtained leading to interesting physical consequences.Comment: Extended version of the lectures given by G. Jona-Lasinio at the 9th
Brazilian school of Probability, August 200
Minimum dissipation principle in stationary non equilibrium states
We generalize to non equilibrium states Onsager's minimum dissipation
principle. We also interpret this principle and some previous results in terms
of optimal control theory. Entropy production plays the role of the cost
necessary to drive the system to a prescribed macroscopic configuration
Superdiffusivity of Finite-Range Asymmetric Exclusion Processes on
We consider finite-range asymmetric exclusion processes on with
non-zero drift. The diffusivity is expected to be of . We prove that in the weak (Tauberian) sense
that as . The proof employs the resolvent method to make a direct comparison with the
totally asymmetric simple exclusion process, for which the result is a
consequence of the scaling limit for the two-point function recently obtained
by Ferrari and Spohn. In the nearest neighbor case, we show further that
is monotone, and hence we can conclude that in the usual sense.Comment: Version 3. Statement of Theorem 3 is correcte
On the long range correlations of thermodynamic systems out of equilibrium
Experiments show that macroscopic systems in a stationary nonequilibrium
state exhibit long range correlations of the local thermodynamic variables. In
previous papers we proposed a Hamilton-Jacobi equation for the nonequilibrium
free energy as a basic principle of nonequilibrium thermodynamics. We show here
how an equation for the two point correlations can be derived from the
Hamilton-Jacobi equation for arbitrary transport coefficients for dynamics with
both external fields and boundary reservoirs. In contrast with fluctuating
hydrodynamics, this approach can be used to derive equations for correlations
of any order. Generically, the solutions of the equation for the correlation
functions are non-trivial and show that long range correlations are indeed a
common feature of nonequilibrium systems. Finally, we establish a criterion to
determine whether the local thermodynamic variables are positively or
negatively correlated in terms of properties of the transport coefficients.Comment: 4 page
Macroscopic current fluctuations in stochastic lattice gases
We study current fluctuations in lattice gases in the macroscopic limit
extending the dynamic approach to density fluctuations developed in previous
articles. More precisely, we derive large deviation estimates for the
space--time fluctuations of the empirical current which include the previous
results. Large time asymptotic estimates for the fluctuations of the time
average of the current, recently established by Bodineau and Derrida, can be
derived in a more general setting. There are models where we have to modify
their estimates and some explicit examples are introduced.Comment: 4 pages, LaTeX, Changed conten
Large deviations of the empirical current in interacting particle systems
We study current fluctuations in lattice gases in the hydrodynamic scaling
limit. More precisely, we prove a large deviation principle for the empirical
current in the symmetric simple exclusion process with rate functional I. We
then estimate the asymptotic probability of a fluctuation of the average
current over a large time interval and show that the corresponding rate
function can be obtained by solving a variational problem for the functional I.
For the symmetric simple exclusion process the minimizer is time independent so
that this variational problem can be reduced to a time independent one. On the
other hand, for other models the minimizer is time dependent. This phenomenon
is naturally interpreted as a dynamical phase transition.Comment: 26 page
Clausius inequality and optimality of quasi static transformations for nonequilibrium stationary states
Nonequilibrium stationary states of thermodynamic systems dissipate a
positive amount of energy per unit of time. If we consider transformations of
such states that are realized by letting the driving depend on time, the amount
of energy dissipated in an unbounded time window becomes then infinite.
Following the general proposal by Oono and Paniconi and using results of the
macroscopic fluctuation theory, we give a natural definition of a renormalized
work performed along any given transformation. We then show that the
renormalized work satisfies a Clausius inequality and prove that equality is
achieved for very slow transformations, that is in the quasi static limit. We
finally connect the renormalized work to the quasi potential of the macroscopic
fluctuation theory, that gives the probability of fluctuations in the
stationary nonequilibrium ensemble
Lagrangian phase transitions in nonequilibrium thermodynamic systems
In previous papers we have introduced a natural nonequilibrium free energy by
considering the functional describing the large fluctuations of stationary
nonequilibrium states. While in equilibrium this functional is always convex,
in nonequilibrium this is not necessarily the case. We show that in
nonequilibrium a new type of singularities can appear that are interpreted as
phase transitions. In particular, this phenomenon occurs for the
one-dimensional boundary driven weakly asymmetric exclusion process when the
drift due to the external field is opposite to the one due to the external
reservoirs, and strong enough.Comment: 10 pages, 2 figure
- …