399 research outputs found

    A note on black hole entropy, area spectrum, and evaporation

    Full text link
    We argue that a process where a fuzzy space splits in two others can be used to explain the origin of the black hole entropy, and why a "generalized second law of thermodynamics" appears to hold in the presence of black holes. We reach the Bekenstein-Hawking formula from the count of the microstates of a black hole modeled by a fuzzy space. In this approach, a discrete area spectrum for the black hole, which becomes increasingly spaced as the black hole approaches the Planck scale, is obtained. We show that, as a consequence of this, the black hole radiation becomes less and less entropic as the black hole evaporates, in a way that some information about its initial state could be recovered.Comment: 4 pages, 2 figure

    Duality and fields redefinition in three dimensions

    Full text link
    We analyze local fields redefinition and duality for gauge field theories in three dimensions. We find that both Maxwell-Chern-Simons and the Self-Dual models admits the same fields redefinition. Maxwell-Proca action and its dual also share this property. We show explicitly that a gauge-fixing term has no influence on duality and fields redefinition.Comment: 8 pages, suppressed contents. To appear in J. Phys.

    Dirac quantization of a nonminimal gauged O(3) sigma model

    Full text link
    The (2+1) dimensional gauged O(3) nonlinear sigma model with Chern-Simons term is canonically quantized. Furthermore, we study a nonminimal coupling in this model implemented by means of a Pauli-type term. It is shown that the set of constraints of the model is modified by the introduction of the Pauli coupling. Moreover, we found that the quantum commutator relations in the nominimal case is independent of the Chern-Simons coefficient, in contrast to the minimal one.Comment: 7 pages, to appear in Modern Physics Letters

    Three-dimensional Dirac oscillator in a thermal bath

    Full text link
    The thermal properties of the three-dimensional Dirac oscillator are considered. The canonical partition function is determined, and the high-temperature limit is assessed. The degeneracy of energy levels and their physical implications on the main thermodynamic functions are analyzed, revealing that these functions assume values greater than the one-dimensional case. So that at high temperatures, the limit value of the specific heat is three times bigger.Comment: 9 pages, 4 figures. Text improved, references added. Revised to match accepted version in Europhysics Letters

    Topological mass generation to antisymmetric tensor matter field

    Full text link
    We propose a mechanism to give mass to tensor matter field which preserve the U(1) symmetry. We introduce a complex vector field that couples with the tensor in a topological term. We also analyze the influence of the kinetic terms of the complex vector in our mechanism.Comment: 5 pages, to appear in Europhysics Letter
    • …
    corecore