143 research outputs found
A common variant of the MACC1 gene is significantly associated with overall survival in colorectal cancer patients
<p>Abstract</p> <p>Background</p> <p>The newly discovered metastasis-associated in colon cancer-1 (MACC1) gene is a key regulator of the HGF/MET pathway. Deregulation of HGF/MET signaling is reported as a prognostic marker for tumorigenesis, early stage invasion, and metastasis. High expression levels of MACC1 have been associated with colon cancer metastasis and reduced survival. Potential links between the genetic diversity of the MACC1 locus and overall survival are unknown. We therefore investigated the association between MACC1 tagging single nucleotide polymorphisms (SNPs) and overall survival in a large cohort of colorectal cancer patients.</p> <p>Methods</p> <p>The study included 318 subjects with histopathologically proven colorectal cancer at the Academic Teaching Hospital Feldkirch, Austria. Survival data were provided by the federal agency for statistics in Austria. Genomic DNA was isolated from formalin-fixed paraffin-embedded specimens; six tagging SNPs (rs1990172, rs3114446, rs10275612, rs3095007, rs3095009, and rs7780032), capturing most of the common variants of the MACC1 locus, were genotyped by SNaPshot assays.</p> <p>Results</p> <p>Over a mean follow up period of 5.3 (± 1.0) years, 94 deaths were recorded. Carriers of the G-allele of SNP rs1990172 showed a significantly decreased overall survival (additive HR = 1.38 [1.05-1.82]; <it>p </it>= 0.023). Multivariate analysis adjusted for age and UICC tumor stage confirmed this result (HR = 1.49 [1.12-1.98]; <it>p </it>= 0.007). Other investigated genetic variants of the MACC1 gene were not significantly associated with overall survival (<it>p</it>-values > 0.05).</p> <p>Conclusions</p> <p>For the first time, our study investigated the influence of MACC1 tagging polymorphisms on overall survival suggesting SNP rs1990172 as a predictor for reduced overall survival in colorectal cancer patients. Further studies will be required to validate our findings.</p
Dietary antioxidant supplementation promotes growth in senegalese sole postlarvae
Somatic growth is a balance between protein synthesis and degradation, and it is largely influenced by nutritional clues. Antioxidants levels play a key role in protein turnover by reducing the oxidative damage in the skeletal muscle, and hence promoting growth performance in the long-term. In the present study, Senegalese sole postlarvae (45 days after hatching, DAH) were fed with three experimental diets, a control (CTRL) and two supplemented with natural antioxidants: curcumin (CC) and grape seed (GS). Trial spanned for 25 days and growth performance, muscle cellularity and the expression of muscle growth related genes were assessed at the end of the experiment (70 DAH). The diets CC and GS significantly improved growth performance of fish compared to the CTRL diet. This enhanced growth was associated with larger muscle cross sectional area, with fish fed CC being significantly different from those fed the CTRL. Sole fed the CC diet had the highest number of muscle fibers, indicating that this diet promoted muscle hyperplastic growth. Although the mean fiber diameter did not differ significantly amongst treatments, the proportion of large-sized fibers (>25 μm) was also higher in fish fed the CC diet suggesting increased hypertrophic growth. Such differences in the phenotype were associated with a significant up-regulation of the myogenic differentiation 2 (myod2) and the myomaker (mymk) transcripts involved in myocyte differentiation and fusion, respectively, during larval development. The inclusion of grape seed extract (GS diet) resulted in a significant increase in the expression of myostatin1. These results demonstrate that both diets (CC and GS) can positively modulate muscle development and promote growth in sole postlarvae. This effect is more prominent in CC fed fish, where increased hyperplastic and hypertrophic growth of the muscle was associated with an upregulation of myod2 and mymk genes.FCT: IF/00482/2014/CP1217/CT0005; UIDB/04326/2020; VALORMAR
(ref. 024517) through Compete 2020, Lisboa 2020, CRESC
Algarve 2020, Portugal 2020 and the European Union’s
ERDF, and IFAPA project RTA2017-00054-C03-01 funded
from MCIU/AEI/FEDER, UE.info:eu-repo/semantics/publishedVersio
Specific genomic aberrations in primary colorectal cancer are associated with liver metastases
Background: Accurate staging of colorectal cancer (CRC) with clinicopathological parameters is important for predicting prognosis and guiding treatment but provides no information about organ site of metastases. Patterns of genomic aberrations in primary colorectal tumors may reveal a chromosomal signature for organ specific metastases. Methods: Array Comparative Genomic Hybridization (aCGH) was employed to asses DNA copy number changes in primary colorectal tumors of three distinctive patient groups. This included formalin-fixed, paraffin-embedded tissue of patients who developed liver metastases (LM; n = 36), metastases (PM; n = 37) and a group that remained metastases-free (M0; n = 25). A novel statistical method for identifying recurrent copy number changes, KC-SMART, was used to find specific locations of genomic aberrations specific for various groups. We created a classifier for organ specific metastases based on the aCGH data using Prediction Analysis for Microarrays (PAM). Results: Specifically in the tumors of primary CRC patients who subsequently developed liver metastasis, KC-SMART analysis identified genomic aberrations on chromosome 20q. LM-PAM, a shrunken centroids classifier for liver metastases occurrence, was able to distinguish the LM group from the other groups (M0&PM) with 80% accuracy (78% sensitivity and 86% specificity). The classification is predominantly based on chromosome 20q aberrations. Conclusion: Liver specific CRC metastases may be predicted with a high accuracy based on specific genomic aberrations in the primary CRC tumor. The ability to predict the site of metastases is important for improvement of personalized patient management.MediamaticsElectrical Engineering, Mathematics and Computer Scienc
Estrogen Receptor Silencing Induces Epithelial to Mesenchymal Transition in Human Breast Cancer Cells
We propose the hypothesis that loss of estrogen receptor function which leads to endocrine resistance in breast cancer, also results in trans-differentiation from an epithelial to a mesenchymal phenotype that is responsible for increased aggressiveness and metastatic propensity. siRNA mediated silencing of the estrogen receptor in MCF7 breast cancer cells resulted in estrogen/tamoxifen resistant cells (pII) with altered morphology, increased motility with rearrangement and switch from a keratin/actin to a vimentin based cytoskeleton, and ability to invade simulated components of the extracellular matrix. Phenotypic profiling using an Affymetrix Human Genome U133 plus 2.0 GeneChip indicated geometric fold changes ≥3 in approximately 2500 identifiable unique sequences, with about 1270 of these being up-regulated in pII cells. Changes were associated with genes whose products are involved in cell motility, loss of cellular adhesion and interaction with the extracellular matrix. Selective analysis of the data also showed a shift from luminal to basal cell markers and increased expression of a wide spectrum of genes normally associated with mesenchymal characteristics, with consequent loss of epithelial specific markers. Over-expression of several peptide growth factors and their receptors are indicative of an increased contribution to the higher proliferative rates of pII cells as well as aiding their potential for metastatic activity. Signalling molecules that have been identified as key transcriptional drivers of epithelial to mesenchymal transition were also found to be elevated in pII cells. These data support our hypothesis that induced loss of estrogen receptor in previously estrogen/antiestrogen sensitive cells is a trigger for the concomitant loss of endocrine dependence and onset of a series of possibly parallel events that changes the cell from an epithelial to a mesenchymal type. Inhibition of this transition through targeting of specific mediators may offer a useful supplementary strategy to circumvent the effects of loss of endocrine sensitivity
Biological Convergence of Cancer Signatures
Gene expression profiling has identified cancer prognostic and predictive signatures with superior performance to conventional histopathological or clinical parameters. Consequently, signatures are being incorporated into clinical practice and will soon influence everyday decisions in oncology. However, the slight overlap in the gene identity between signatures for the same cancer type or condition raises questions about their biological and clinical implications. To clarify these issues, better understanding of the molecular properties and possible interactions underlying apparently dissimilar signatures is needed. Here, we evaluated whether the signatures of 24 independent studies are related at the genome, transcriptome or proteome levels. Significant associations were consistently observed across these molecular layers, which suggest the existence of a common cancer cell phenotype. Convergence on cell proliferation and death supports the pivotal involvement of these processes in prognosis, metastasis and treatment response. In addition, functional and molecular associations were identified with the immune response in different cancer types and conditions that complement the contribution of cell proliferation and death. Examination of additional, independent, cancer datasets corroborated our observations. This study proposes a comprehensive strategy for interpreting cancer signatures that reveals common design principles and systems-level properties
Novel immunohistochemistry-based signatures to predict metastatic site of triple-negative breast cancers
Background: Although distant metastasis (DM) in breast cancer (BC) is the most lethal form of recurrence and the most commonunderlying cause of cancer related deaths, the outcome following the development of DM is related to the site of metastasis.Triple negative BC (TNBC) is an aggressive form of BC characterised by early recurrences and high mortality. Athough multiplevariables can be used to predict the risk of metastasis, few markers can predict the specific site of metastasis. This study aimed atidentifying a biomarker signature to predict particular sites of DM in TNBC.Methods: A clinically annotated series of 322 TNBC were immunohistochemically stained with 133 biomarkers relevant to BC, todevelop multibiomarker models for predicting metastasis to the bone, liver, lung and brain. Patients who experienced metastasisto each site were compared with those who did not, by gradually filtering the biomarker set via a two-tailed t-test and Coxunivariate analyses. Biomarker combinations were finally ranked based on statistical significance, and evaluated in multivariableanalyses.Results: Our final models were able to stratify TNBC patients into high risk groups that showed over 5, 6, 7 and 8 times higher riskof developing metastasis to the bone, liver, lung and brain, respectively, than low-risk subgroups. These models for predictingsite-specific metastasis retained significance following adjustment for tumour size, patient age and chemotherapy status.Conclusions: Our novel IHC-based biomarkers signatures, when assessed in primary TNBC tumours, enable prediction of specificsites of metastasis, and potentially unravel biomarkers previously unknown in site tropism
- …