2,322 research outputs found
The Midpoint Rule as a Variational--Symplectic Integrator. I. Hamiltonian Systems
Numerical algorithms based on variational and symplectic integrators exhibit
special features that make them promising candidates for application to general
relativity and other constrained Hamiltonian systems. This paper lays part of
the foundation for such applications. The midpoint rule for Hamilton's
equations is examined from the perspectives of variational and symplectic
integrators. It is shown that the midpoint rule preserves the symplectic form,
conserves Noether charges, and exhibits excellent long--term energy behavior.
The energy behavior is explained by the result, shown here, that the midpoint
rule exactly conserves a phase space function that is close to the Hamiltonian.
The presentation includes several examples.Comment: 11 pages, 8 figures, REVTe
Direct 2D measurement of time-averaged forces and pressure amplitudes in acoustophoretic devices using optical trapping
Ultrasonic standing waves are increasingly applied in the manipulation and sorting of micrometer-sized particles in microfluidic cells. To optimize the performance of such devices, it is essential to know the exact forces that the particles experience in the acoustic wave. Although much progress has been made via analytical and numerical modeling, the reliability of these methods relies strongly on the assumptions used, e.g. the boundary conditions. Here, we have combined an acoustic flow cell with an optical laser trap to directly measure the force on a single spherical particle in two dimensions. While performing ultrasonic frequency scans, we measured the time-averaged forces on single particles that were moved with the laser trap through the microfluidic cell. The cell including piezoelectric transducers was modeled with finite element methods. We found that the experimentally obtained forces and the derived pressure fields confirm the predictions from theory and modeling. This novel approach can now be readily expanded to other particle, chamber, and fluid regimes and opens up the possibility of studying the effects of the presence of boundaries, acoustic streaming, and non-linear fluids.ISSN:1473-0197ISSN:1473-018
The neutrophil: A key resourceful agent in immune-mediated vasculitis
The term “vasculitis” refers to a group of rare immune-mediated diseases characterized by the dysregulated immune system attacking blood vessels located in any organ of the body, including the skin, lungs, and kidneys. Vasculitides are classified according to the size of the vessel that is affected. Although this observation is not specific to small-, medium-, or large-vessel vasculitides, patients show a high circulating neutrophil-to-lymphocyte ratio, suggesting the direct or indirect involvement of neutrophils in these diseases. As first responders to infection or inflammation, neutrophils release cytotoxic mediators, including reactive oxygen species, proteases, and neutrophil extracellular traps. If not controlled, this dangerous arsenal can injure the vascular system, which acts as the main transport route for neutrophils, thereby amplifying the initial inflammatory stimulus and the recruitment of immune cells. This review highlights the ability of neutrophils to “set the tone” for immune cells and other cells in the vessel wall. Considering both their long-established and newly described roles, we extend their functions far beyond their direct host-damaging potential. We also review the roles of neutrophils in various types of primary vasculitis, including immune complex vasculitis, anti-neutrophil cytoplasmic antibody-associated vasculitis, polyarteritis nodosa, Kawasaki disease, giant cell arteritis, Takayasu arteritis, and Behçet's disease
Positive-P and Wigner representations for quantum-optical systems with nonorthogonal modes
We generalize the basic concepts of the positive-P and Wigner representations to unstable quantum-optical systems that are based on nonorthogonal quasimodes. This lays the foundation for a quantum description of such systems, such as, for example an unstable cavity laser. We compare both representations by calculating the tunneling times for an unstable resonator optical parametric oscillator
A 160Gb/s (4x40) WDM O-band Tx subassembly using a 4-ch array of silicon rings co-packaged with a SiGe BiCMOS IC driver
We present a 400 (8×50) Gb/s-capable RM-based Si-photonic WDM O-band TxRx with 1.17nm channel spacing for high-speed optical interconnects and demonstrate successful 50Gb/s-NRZ TxRx operation achieving a ~4.5dB Tx extinction ratio under 2.15Vpp drive
Subjects with Discordant Airways Obstruction: Lost between Spirometric Definitions of COPD
Background. Since the FEV1/FVC ratio declines with age, using the fixed ratio of 0.70 leads to overdiagnosis of COPD in older populations and underdiagnosis among young adults. Objective. To evaluate whether discordant obstructive cases (FEV1/FVC < 0.70 but ≥LLN) are a healthy population or have clinical features that would place them at increased risk. Methods. We used post-bronchodilator spirometry data from the population-based Austrian Burden of Obstructive Lung Disease (BOLD) study. Those with post-bronchodilator FEV1/FVC ratio <LLN and <0.70 were defined as concordant obstructive cases. Participants with post-bronchodilator FEV1/FVC ratio ≥LLN but <0.70 were defined as discordant obstructive cases. Results. Discordant obstructive cases were more likely to be older, male and never-smokers. Additionally they had less respiratory symptoms and less severe impairment of FEV1. However, discordant obstructive cases reported significantly more often a diagnosis of heart disease than subjects with normal lung function (27.2% vs 7.3%, P = .015). Conclusion. The clinical profile of discordant obstructive cases includes potentially important comorbid disease
Friction of the surface plasmon by high-energy particle-hole pairs: Are memory effects important?
We show that the dynamics of the surface plasmon in metallic nanoparticles
damped by its interaction with particle-hole excitations can be modelled by a
single degree of freedom coupled to an environment. In this approach, the fast
decrease of the dipole matrix elements that couple the plasmon to particle-hole
pairs with the energy of the excitation allows a separation of the Hilbert
space into low- and high-energy subspaces at a characteristic energy that we
estimate. A picture of the spectrum consisting of a collective excitation built
from low-energy excitations which interacts with high-energy particle-hole
states can be formalised. The high-energy excitations yield an approximate
description of a dissipative environment (or "bath") within a finite confined
system. Estimates for the relevant timescales establish the Markovian character
of the bath dynamics with respect to the surface plasmon evolution for
nanoparticles with a radius larger than about 1 nm.Comment: 8 pages, 1 figure; see also cond-mat/070372
- …