13 research outputs found

    A review of Taenaris Hubner (Lepidoptera: Nymphalidae: Amathusiinae) in Queensland, together with first Australian records for T. myops kirschi Staudinger and Elymnias agondas melanippe Grose-Smith (Satyrinae).

    No full text
    Species of the amathusiine genus Taenaris Hubner known to occur in Australia, predominantly from Torres Strait, are reviewed and illustrated. T. myops kirschi Staudinger is recorded for the first time in Australia from four male specimens collected on Dauan Island, Torres Strait. A female specimen of the satyrine Elymnias agondas melanippe Grose-Smith also collected from Dauan Island represents the first record of this taxon from Australia. The high degree of variation observed in the external facies of Taenaris from Torres Strait and reliable taxonomic separation of female specimens are discussed. Taenaris-like forms of the papilionid, Papilio aegeus ormenus Guerin-Meneville and E. a. melanippe from Torres Strait and Dauan Island respectively are illustrated and reviewed. The form of P. a. ormenus from Torres Strait that is most similar to Taenaris spp. is identified as form ormenus Guerin-Meneville variety onesimus Hewitson

    Baseline responses of Alphitobius diaperinus (Coleoptera: Tenebrionidae) to spinosad, and susceptibility of broiler populations in eastern and southern Australia

    No full text
    Spinosad was proposed as a potential chemical for control of lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae), in Australian broiler houses after the detection of strong cyfluthrin resistance in many beetle populations. In 2004-2006, spinosad susceptibility of 13 beetle populations from eastern and southern Australian broiler houses and a cyfluthrin/fenitrothion-resistant reference population was determined using topical application, and was compared with the susceptibility of an insecticide-susceptible reference population. Comparisons of dose-response curves and baseline data showed that all populations, including the insecticide-susceptible population, were roughly equivalent in their response to spinosad, indicating no preexisting spinosad resistance. Two field populations, including the resistant reference population, which had confirmed cyfluthrin/fenitrothion- resistance, showed no cross-resistance to spinosad. There was no significant correlation between beetle weight and LC99.9. A discriminating concentration of 3% spinosad was set to separate resistant and susceptible individuals. Considering the levels of spinosad resistance that have been recorded in other insect pests, the sustained future usefulness of spinosad as a broiler house treatment will rely on effective integrated beetle management programs combined with carefully planned chemical use strategies

    A new culture method for lesser mealworm, Alphitobius diaperinus

    No full text
    A new culture method for lesser mealworm, Alphitobius diaperinus (Panzer), was developed to provide large numbers of adult lesser mealworms of approximately the same age for insecticide resistance testing. Culturing entailed allowing 100 adults to reproduce for 4 days in a wheat-based culture medium contained inside a plastic culture box, removing the adults from the medium, and then rearing their progeny to adulthood therein, in approximately 56 days at 32 degrees C and 55% RH. During their development, progeny were supplied water via apple slices at 0, 21 and 35 days, and a foam substrate in which to pupate, also at 35 days. During 2004-2005, adult lesser mealworms were collected from six broiler-house populations and then cultured with this method. Each population produced 4500 adults required to complete resistance testing with one insecticide within ten culture boxes, at an average of 798 adults per culture box

    Baseline responses of Alphitobius diaperinus (Coleoptera : Tenebrionidae) to cyfluthrin and detection of strong resistance in field populations in eastern Australia

    No full text
    Resistance to cyfluthrin in broiler farm populations of lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae), in eastern Australia was suspected to have contributed to recent control failures. In 2000-2001, beetles from 11 broiler farms were tested for resistance by comparing them to an insecticide-susceptible reference population by using topical application. Resistance was detected in almost all beetle populations (up to 22 times the susceptible at the LC50), especially in southeastern Queensland where more cyfluthrin applications had been made. Two from outside southeastern Queensland were found to be susceptible. Dose-mortality data generated from the reference population over a range of cyflutbrin concentrations showed that 0.0007% cyfluthrin at a LC99.9 level could be used as a convenient dose to discriminate between susceptible and resistant populations. Using this discriminating concentration, from 2001 to 2005, the susceptibilities of 18 field populations were determined. Of these, 11 did not exhibit complete mortality at the discriminating concentration (mortality range 2.8-97.7%), and in general, cyfluthrin resistance was directly related to the numbers of cyfluthrin applications. As in the full study, populations outside of southeastern Queensland were found to have lower levels of resistance or were susceptible. One population from an intensively farmed broiler area in southeastern Queensland exhibited low mortality despite having no known exposure to cyfluthrin. Comparisons of LC50 values of three broiler populations and a susceptible population, collected in 2000 and 2001 and recollected in 2004 and 2005 indicated that values from the three broiler populations had increased over this time for all populations. The continued use of cyfluthrin for control of A. diaperinus in eastern Australia is currently under consideration

    Responses of Susceptible and Cyfluthrin-Resistant Broiler House Populations of Lesser Mealworm (Coleoptera: Tenebrionidae) to gamma-Cyhalothrin

    No full text
    gamma-Cyhalothrin was proposed as an agent for management of lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae), in Australian broiler houses. From 2007 to 2009, baseline susceptibility of 20 Australian broiler farm beetle populations plus an insecticide-susceptible laboratory population was determined for gamma-cyhalothrin by using topical application. In addition, repeat testing and regression analyses of specific beetle populations to gamma-cyhalothrin showed that topical application was a very reliable and repeatable testing method. The 21 populations were tested with a cyfluthrin discriminating concentration (based on LC99.9, 0.0007% [AI]) to identify possible cross-resistance. Across all populations, there was a significant linear relationship between the gamma-cyhalothrin LC50 value and mortality induced by the cyfluthrin LC99.9. Full cyfluthrin baseline studies of seven populations indicated that gamma-cyhalothrin was twice as toxic as cyfluthrin, even against susceptible beetles and resistance ratios at the cyfluthrin LC50 and LC99.9 varied considerably, with maxima of 56.6 and 83.6 respectively. Corresponding ratios for gamma-cyhalothrin for the same populations were 8.6 (LC50) and 7.9 (LC99.9). There were no significant correlations between beetle weights and gamma-cyhalothrin LC50 or LC99.9 values. A discriminating concentration of 0.005% (Al) gamma-cyhalothrin was chosen to detect any future changes in susceptibility. Results of this study suggest that cyfluthrin can confer cross-resistance to gamma-cyhalothrin in A. diaperinus, but the magnitude of this resistance is unpredictable. Thus, widespread and frequent cyfluthrin use in broiler houses in eastern Australia, which has selected for cyfluthrin resistance, also has resulted in reduced susceptibility to gamma-cyhalothrin. Due to its higher relative toxicity, gamma-cyhalothrin is still potentially useful for management of lesser mealworm, but due to cross-resistance issues, adoption of gamma-cyhalothrin for broiler house use will require a cautious and judicious approach

    Responses of Susceptible and Cyfluthrin-Resistant Broiler House Populations of Lesser Mealworm (Coleoptera: Tenebrionidae) to gamma-Cyhalothrin

    No full text
    gamma-Cyhalothrin was proposed as an agent for management of lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae), in Australian broiler houses. From 2007 to 2009, baseline susceptibility of 20 Australian broiler farm beetle populations plus an insecticide-susceptible laboratory population was determined for gamma-cyhalothrin by using topical application. In addition, repeat testing and regression analyses of specific beetle populations to gamma-cyhalothrin showed that topical application was a very reliable and repeatable testing method. The 21 populations were tested with a cyfluthrin discriminating concentration (based on LC99.9, 0.0007% [AI]) to identify possible cross-resistance. Across all populations, there was a significant linear relationship between the gamma-cyhalothrin LC50 value and mortality induced by the cyfluthrin LC99.9. Full cyfluthrin baseline studies of seven populations indicated that gamma-cyhalothrin was twice as toxic as cyfluthrin, even against susceptible beetles and resistance ratios at the cyfluthrin LC50 and LC99.9 varied considerably, with maxima of 56.6 and 83.6 respectively. Corresponding ratios for gamma-cyhalothrin for the same populations were 8.6 (LC50) and 7.9 (LC99.9). There were no significant correlations between beetle weights and gamma-cyhalothrin LC50 or LC99.9 values. A discriminating concentration of 0.005% (Al) gamma-cyhalothrin was chosen to detect any future changes in susceptibility. Results of this study suggest that cyfluthrin can confer cross-resistance to gamma-cyhalothrin in A. diaperinus, but the magnitude of this resistance is unpredictable. Thus, widespread and frequent cyfluthrin use in broiler houses in eastern Australia, which has selected for cyfluthrin resistance, also has resulted in reduced susceptibility to gamma-cyhalothrin. Due to its higher relative toxicity, gamma-cyhalothrin is still potentially useful for management of lesser mealworm, but due to cross-resistance issues, adoption of gamma-cyhalothrin for broiler house use will require a cautious and judicious approach

    Factors affecting localized abundance and distribution of lesser mealworm in earth-floor broiler houses in subtropical Australia.

    No full text
    Factors that influence the localized abundance and distribution of lesser mealworm, Alphitobius diaperinus (Panzer), in litter of two compacted earth-floor broiler houses in subtropical Australia were studied using various experimental manipulations. Numbers of lesser mealworms substantially increased inside caged areas and under uncaged empty feed pans placed in open areas of the houses. These populations were found to be localized and independent of chicken-feed, manure, and high beetle populations that normally occur under existing feed pans. Substantial horizontal movement of larvae to under feed pans was recorded. Placing metal barriers around these pans significantly restricted this movement. In almost all treatments, lesser mealworms typically peaked in numbers during the middle of the flock time. This temporal pattern of abundance also was observed under pans within barriers, where relatively low insect numbers occurred, but it was not observed in uncaged open areas (where chickens had complete access). It is likely that larvae do not establish in open areas, but fluctuate in numbers as they either move to refuges away from chickens or suffer high rates of mortality. In these refuges, larvae peak in numbers and then leave the litter environment to pupate in the earth floor before the end of the flock time. This behavior might be exploited for management of lesser mealworm by targeting applications of control agents

    Distributions of lesser mealworm (Coleoptera: Tenebrionidae) in litter of a compacted earth floor broiler house in subtropical Queensland, Australia

    No full text
    Distributions of lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae), in litter of a compacted earth floor broiler house in southeastern Queensland, Australia, were studied over two flocks. Larvae were the predominant stage recorded. Significantly low densities occurred in open locations and under drinker cups where chickens had complete access, whereas high densities were found under feed pans and along house edges where chicken access was restricted. For each flock, lesser mealworm numbers increased at all locations over the first 14 d, especially under feed pans and along house edges, peaking at 26 d and then declining over the final 28 d. A life stage profile per flock was devised that consisted of the following: beetles emerge from the earth floor at the beginning of each flock, and females lay eggs, producing larvae that peak in numbers at 3 wk; after a further 3 to 4 wk, larvae leave litter to pupate in the earth floor, and beetles then emerge by the end of the flock time. Removing old litter from the brooder section at the end of a flock did not greatly reduce mealworm numbers over the subsequent flock, but it seemed to prevent numbers increasing, while an increase in numbers in the grow-out section was recorded after reusing litter. Areas under feed pans and along house edges accounted for 5% of the total house area, but approximately half the estimated total number of lesser mealworms in the broiler house occurred in these locations. The results of this study will be used to determine optimal deployment of site-specific treatments for lesser mealworm control
    corecore