5 research outputs found

    Formation of beads-on-a-string structures during break-up of viscoelastic filaments

    Get PDF
    Break-up of viscoelastic filaments is pervasive in both nature and technology. If a filament is formed by placing a drop of saliva between a thumb and forefinger and is stretched, the filament’s morphology close to break-up corresponds to beads of several sizes interconnected by slender threads. Although there is general agreement that formation of such beads-on-a-string (BOAS) structures occurs only for viscoelastic fluids, the underlying physics remains unclear and controversial. The physics leading to the formation of BOAS structures is probed by numerical simulation. Computations reveal that viscoelasticity alone does not give rise to a small, satellite bead between two much larger main beads but that inertia is required for its formation. Viscoelasticity, however, enhances the growth of the bead and delays pinch-off, which leads to a relatively long-lived beaded structure. We also show for the first time theoretically that yet smaller, sub-satellite beads can also form as seen in experiments.National Science Foundation (U.S.). ERC-SOPS (EEC-0540855)Nanoscale Interdisciplinary Research Thrust on 'Directed Self-assembly of Suspended Polymer Fibers' (NSF-DMS0506941

    Stability of liquid bridges between coaxial equidimensional disks to axisymmetric finite perturbations: A review

    No full text
    This paper reviews the dynamics of breaking or oscillating axisymmetric liquid bridges, and estimates of the energy which is needed to break a liquid bridge. We consider a liquid bridge spanning two coaxial equal disks with sharp edges and held by surfacetension forces. The liquid volume is assumed to be conserved under perturbations, and the contact lines are pinned to the disk edges. The perturbations are finite and axisymmetric. An analysis is based on the one-dimensional models previously used in capillary jet theory and last several decades for study a liquid bridge dynamics. According to the scientific project JEREMI (Japanese and European Research Experiment on Marangoni Instabilities), the first stage of the space experiment on ISS will involve an isothermal liquid bridge with a gas blowing parallel to the axial direction of the bridge. The geometry corresponds to a cylindrical volume liquid bridge coaxially placed into an outer cylinder with solid walls. The gas enters the annular duct bounded by the outer cylinder and the internal system consisting of supporting vertical rods and the liquid bridge. Considering that the bridge is small (the rod's radii are 3 mm) and the gas velocity is typically (0.25 / 0.37) m/s, the perturbations cannot be considered small. Thus, one may assume that the amplitude of the liquid bridge perturbations is sufficiently large that departures from linearity must be considered. © Springer Science+Business Media B.V. 2012.SCOPUS: re.jinfo:eu-repo/semantics/publishe
    corecore