149 research outputs found

    Problematising the discourses of the dominant: whiteness and reconciliation

    Get PDF
    This article investigates how underlying forms of power can affect the political actions of those in the dominant group, in this case white Australians. To do this we identify connections between the discourses used by white Australians involved in Reconciliation, the power and privilege of whiteness in Australia, and participants’ understandings and actions towards Reconciliation. Using Parker’s (1992) approach to discourse analysis, four discourses were identified from interviews and focus groups with white Australians involved in Reconciliation. These were labelled ‘indigenous project’, ‘institutional change’, ‘challenging racism’, and ‘bringing them together’. We argue that understanding the power relations that underlie the political actions of those in dominant positions is critical to ensuring the goals of anti-racism are achieved. Discourse analysis may allow us to gain a deeper understanding of the power and the potential impacts that may flow from particular positions and how power may be made more visible to the dominant group

    An expression module of WIPF1-coexpressed genes identifies patients with favorable prognosis in three tumor types

    Get PDF
    Wiskott–Aldrich syndrome (WAS) predisposes patients to leukemia and lymphoma. WAS is caused by mutations in the protein WASP which impair its interaction with the WIPF1 protein. Here, we aim to identify a module of WIPF1-coexpressed genes and to assess its use as a prognostic signature for colorectal cancer, glioma, and breast cancer patients. Two public colorectal cancer microarray data sets were used for discovery and validation of the WIPF1 co-expression module. Based on expression of the WIPF1 signature, we classified more than 400 additional tumors with microarray data from our own experiments or from publicly available data sets according to their WIPF1 signature expression. This allowed us to separate patient populations for colorectal cancers, breast cancers, and gliomas for which clinical characteristics like survival times and times to relapse were analyzed. Groups of colorectal cancer, breast cancer, and glioma patients with low expression of the WIPF1 co-expression module generally had a favorable prognosis. In addition, the majority of WIPF1 signature genes are individually correlated with disease outcome in different studies. Literature gene network analysis revealed that among WIPF1 co-expressed genes known direct transcriptional targets of c-myc, ESR1 and p53 are enriched. The mean expression profile of WIPF1 signature genes is correlated with the profile of a proliferation signature. The WIPF1 signature is the first microarray-based prognostic expression signature primarily developed for colorectal cancer that is instrumental in other tumor types: low expression of the WIPF1 module is associated with better prognosis

    Non-Hodgkin's lymphoma, obesity and energy homeostasis polymorphisms

    Get PDF
    A population-based case–control study of lymphomas in England collected height and weight details from 699 non-Hodgkin's lymphoma (NHL) cases and 914 controls. Obesity, defined as a body mass index (BMI) over 30 kg m−2 at five years before diagnosis,, was associated with an increased risk of NHL (OR=1.5, 95% CI 1.1–2.1). The excess was most pronounced for diffuse large B-cell lymphoma (OR=1.9, 95% CI 1.3–2.8). Genetic variants in the leptin (LEP 19G>A, LEP −2548G>A) and leptin receptor genes (LEPR 223Q>R), previously shown to modulate NHL risk, as well as a polymorphism in the energy regulatory gene adiponectin (APM1 276G>T), were investigated. Findings varied with leptin genotype, the risks being decreased with LEP 19AA (OR=0.7, 95% CI 0.5–1.0) and increased with LEP −2548GA (OR=1.3, 95% CI 1.0–1.7) and −2548AA (OR=1.4, 95% CI 1.0–1.9), particularly for follicular lymphoma. These genetic findings, which were independent of BMI, were stronger for men than women

    Low temperature exposure induces browning of bone marrow stem cell derived adipocytes in vitro

    Get PDF
    Brown and beige adipocytes are characterised as expressing the unique mitochondrial uncoupling protein (UCP)1 for which the primary stimulus in vivo is cold exposure. The extent to which cold-induced UCP1 activation can also be achieved in vitro, and therefore perform a comparable cellular function, is unknown. We report an in vitro model to induce adipocyte browning using bone marrow (BM) derived mesenchymal stem cells (MSC), which relies on differentiation at 32°C instead of 37°C. The low temperature promoted browning in adipogenic cultures, with increased adipocyte differentiation and upregulation of adipogenic and thermogenic factors, especially UCP1. Cells exhibited enhanced uncoupled respiration and metabolic adaptation. Cold-exposed differentiated cells showed a marked translocation of leptin to adipocyte nuclei, suggesting a previously unknown role for leptin in the browning process. These results indicate that BM-MSC can be driven to forming beige-like adipocytes in vitro by exposure to a reduced temperature. This in vitro model will provide a powerful tool to elucidate the precise role of leptin and related hormones in hitherto functions in the browning process

    Factors Influencing the Statistical Power of Complex Data Analysis Protocols for Molecular Signature Development from Microarray Data

    Get PDF
    Critical to the development of molecular signatures from microarray and other high-throughput data is testing the statistical significance of the produced signature in order to ensure its statistical reproducibility. While current best practices emphasize sufficiently powered univariate tests of differential expression, little is known about the factors that affect the statistical power of complex multivariate analysis protocols for high-dimensional molecular signature development.We show that choices of specific components of the analysis (i.e., error metric, classifier, error estimator and event balancing) have large and compounding effects on statistical power. The effects are demonstrated empirically by an analysis of 7 of the largest microarray cancer outcome prediction datasets and supplementary simulations, and by contrasting them to prior analyses of the same data.THE FINDINGS OF THE PRESENT STUDY HAVE TWO IMPORTANT PRACTICAL IMPLICATIONS: First, high-throughput studies by avoiding under-powered data analysis protocols, can achieve substantial economies in sample required to demonstrate statistical significance of predictive signal. Factors that affect power are identified and studied. Much less sample than previously thought may be sufficient for exploratory studies as long as these factors are taken into consideration when designing and executing the analysis. Second, previous highly-cited claims that microarray assays may not be able to predict disease outcomes better than chance are shown by our experiments to be due to under-powered data analysis combined with inappropriate statistical tests

    Acid catalyzed alkylation of phenols with cyclohexene: Comparison between homogeneous and heterogeneous catalysis, influence of cyclohexyl phenyl ether equilibrium and of the substituent on reaction rate and selectivity

    Get PDF
    The reactivity of several phenols towards liquid phase alkylation with cyclohexene in the presence of heterogeneous and homogeneous acid catalyst at 358 K is studied. The comparison between Amberlyst 15 and CH3SO3H, as examples of heterogeneous and homogeneous systems, shows a higher activity of the former with different behavior of selectivity between the two systems, anyway, in both systems O-alkylation and ring alkylations occur. A remarkable difference in the selectivity of the ring alkylation between heterogeneous and homogeneous systems is observed: Amberlyst 15 shows a constant ortho/para ratio close to 2, while in the presence of CH3SO3H ortho/para is variable from 3 to 5, suggesting an involvement of the cyclohexyl phenyl ether rearrangement. This is proved also by a direct relationship between the ortho/para ratio and the concentration of the cyclohexyl phenyl ether when CH3SO3H is used as a catalyst. The formation of cyclohexyl aril ethers is reversible; on the contrary, ring alkylation appears irreversible. The reactivity of the dimethylphenols shows a strong influence of the steric hindrance of the substituent on the electrophilic attack of the cyclohexyl cation, which is poorly influenced by the inductive effect of the methyl group

    Sphingomyelin Functions as a Novel Receptor for Helicobacter pylori VacA

    Get PDF
    The vacuolating cytotoxin (VacA) of the gastric pathogen Helicobacter pylori binds and enters epithelial cells, ultimately resulting in cellular vacuolation. Several host factors have been reported to be important for VacA function, but none of these have been demonstrated to be essential for toxin binding to the plasma membrane. Thus, the identity of cell surface receptors critical for both toxin binding and function has remained elusive. Here, we identify VacA as the first bacterial virulence factor that exploits the important plasma membrane sphingolipid, sphingomyelin (SM), as a cellular receptor. Depletion of plasma membrane SM with sphingomyelinase inhibited VacA-mediated vacuolation and significantly reduced the sensitivity of HeLa cells, as well as several other cell lines, to VacA. Further analysis revealed that SM is critical for VacA interactions with the plasma membrane. Restoring plasma membrane SM in cells previously depleted of SM was sufficient to rescue both toxin vacuolation activity and plasma membrane binding. VacA association with detergent-resistant membranes was inhibited in cells pretreated with SMase C, indicating the importance of SM for VacA association with lipid raft microdomains. Finally, VacA bound to SM in an in vitro ELISA assay in a manner competitively inhibited by lysenin, a known SM-binding protein. Our results suggest a model where VacA may exploit the capacity of SM to preferentially partition into lipid rafts in order to access the raft-associated cellular machinery previously shown to be required for toxin entry into host cells

    Gray zones around diffuse large B cell lymphoma. Conclusions based on the workshop of the XIV meeting of the European Association for Hematopathology and the Society of Hematopathology in Bordeaux, France

    Get PDF
    The term “gray-zone” lymphoma has been used to denote a group of lymphomas with overlapping histological, biological, and clinical features between various types of lymphomas. It has been used in the context of Hodgkin lymphomas (HL) and non-Hodgkin lymphomas (NHL), including classical HL (CHL), and primary mediastinal large B cell lymphoma, cases with overlapping features between nodular lymphocyte predominant Hodgkin lymphoma and T-cell/histiocyte-rich large B cell lymphoma, CHL, and Epstein–Barr-virus-positive lymphoproliferative disorders, and peripheral T cell lymphomas simulating CHL. A second group of gray-zone lymphomas includes B cell NHL with intermediate features between diffuse large B cell lymphoma and classical Burkitt lymphoma. In order to review controversial issues in gray-zone lymphomas, a joint Workshop of the European Association for Hematopathology and the Society for Hematopathology was held in Bordeaux, France, in September 2008. The panel members reviewed and discussed 145 submitted cases and reached consensus diagnoses. This Workshop summary is focused on the most controversial aspects of gray-zone lymphomas and describes the panel’s proposals regarding diagnostic criteria, terminology, and new prognostic and diagnostic parameters

    Cigarette smoke induces endoplasmic reticulum stress and the unfolded protein response in normal and malignant human lung cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although lung cancer is among the few malignancies for which we know the primary etiological agent (i.e., cigarette smoke), a precise understanding of the temporal sequence of events that drive tumor progression remains elusive. In addition to finding that cigarette smoke (CS) impacts the functioning of key pathways with significant roles in redox homeostasis, xenobiotic detoxification, cell cycle control, and endoplasmic reticulum (ER) functioning, our data highlighted a defensive role for the unfolded protein response (UPR) program. The UPR promotes cell survival by reducing the accumulation of aberrantly folded proteins through translation arrest, production of chaperone proteins, and increased degradation. Importance of the UPR in maintaining tissue health is evidenced by the fact that a chronic increase in defective protein structures plays a pathogenic role in diabetes, cardiovascular disease, Alzheimer's and Parkinson's syndromes, and cancer.</p> <p>Methods</p> <p>Gene and protein expression changes in CS exposed human cell cultures were monitored by high-density microarrays and Western blot analysis. Tissue arrays containing samples from 110 lung cancers were probed with antibodies to proteins of interest using immunohistochemistry.</p> <p>Results</p> <p>We show that: 1) CS induces ER stress and activates components of the UPR; 2) reactive species in CS that promote oxidative stress are primarily responsible for UPR activation; 3) CS exposure results in increased expression of several genes with significant roles in attenuating oxidative stress; and 4) several major UPR regulators are increased either in expression (i.e., BiP and eIF2α) or phosphorylation (i.e., phospho-eIF2α) in a majority of human lung cancers.</p> <p>Conclusion</p> <p>These data indicate that chronic ER stress and recruitment of one or more UPR effector arms upon exposure to CS may play a pivotal role in the etiology or progression of lung cancers, and that phospho-eIF2α and BiP may have diagnostic and/or therapeutic potential. Furthermore, we speculate that upregulation of UPR regulators (in particular BiP) may provide a pro-survival advantage by increasing resistance to cytotoxic stresses such as hypoxia and chemotherapeutic drugs, and that UPR induction is a potential mechanism that could be attenuated or reversed resulting in a more efficacious treatment strategy for lung cancer.</p

    Immunological aspects in chronic lymphocytic leukemia (CLL) development

    Get PDF
    Chronic lymphocytic leukemia (CLL) is unique among B cell malignancies in that the malignant clones can be featured either somatically mutated or unmutated IGVH genes. CLL cells that express unmutated immunoglobulin variable domains likely underwent final development prior to their entry into the germinal center, whereas those that express mutated variable domains likely transited through the germinal center and then underwent final development. Regardless, the cellular origin of CLL remains unknown. The aim of this review is to summarize immunological aspects involved in this process and to provide insights about the complex biology and pathogenesis of this disease. We propose a mechanistic hypothesis to explain the origin of B-CLL clones into our current picture of normal B cell development. In particular, we suggest that unmutated CLL arises from normal B cells with self-reactivity for apoptotic bodies that have undergone receptor editing, CD5 expression, and anergic processes in the bone marrow. Similarly, mutated CLL would arise from cells that, while acquiring self-reactivity for autoantigens—including apoptotic bodies—in germinal centers, are also still subject to tolerization mechanisms, including receptor editing and anergy. We believe that CLL is a proliferation of B lymphocytes selected during clonal expansion through multiple encounters with (auto)antigens, despite the fact that they differ in their state of activation and maturation. Autoantigens and microbial pathogens activate BCR signaling and promote tolerogenic mechanisms such as receptor editing/revision, anergy, CD5+ expression, and somatic hypermutation in CLL B cells. The result of these tolerogenic mechanisms is the survival of CLL B cell clones with similar surface markers and homogeneous gene expression signatures. We suggest that both immunophenotypic surface markers and homogenous gene expression might represent the evidence of several attempts to re-educate self-reactive B cells
    corecore