32 research outputs found

    Measuring changes in Schlemm’s canal and trabecular meshwork in different accommodation states in myopia children: an observational study

    Get PDF
    Abstract Purpose: Studies were designed to evaluate changes in the size of the Schlemm's Canal (SC) and trabecular meshwork(TM) during accommodation stimuli and cycloplegia states in myopic children. Methods: 34 children were enrolled. A -6D accommodation stimulus was achieved by looking at an optotype through a mirror. Cycloplegia state was induced with 1% tropicamide. Two states were confirmed by measuring the central lens thickness(CLT), the anterior chamber depth and the pupil diameter. The size of the Schlemm's Canal (SC) and Trabecular Meshwork(TM) was measured using swept-source optical coherence tomography. And the associations between the change of the SC and the CLT were analyzed. Results: When compared with the relaxation state, under -6D accommodation stimuli, the size of SC increased significantly: the SC area (SCA) amplified from 6371±2517μm2 to 7824±2727 μm2; the SC length (SCL) from 249±10 μm to 295±12 μm, and SC width (SCW) from 27±9 μm to 31±8 μm. Under cycloplegia state, the SCA reduced to 5009±2028 μm2; the SCL to 212±μm and the SCW to 22±5 μm. In addition, the changed areas of SCA (r=0. 35; P=0.0007), SCL (r=0. 251; P=0.0172), and SCW (r=0. 253; P=0.016) were significantly correlated with the change in CLT. However, the size of TM did not change substantially when compared with the relaxation state. Only the TM length (TML) increased from 562±45μm to 587±47μm after -6D accommodation stimulus. Conclusion: SC size enlarges after -6D accommodation stimuli and shrinks under cycloplegia. However, for TM, only the TM length increase under accommodation stimulus state. KEYWORDS: Schlemm’s Canal, Trabecular Meshwork, accommodatio

    CXCR3 Antagonism of SDF-1(5-67) Restores Trabecular Function and Prevents Retinal Neurodegeneration in a Rat Model of Ocular Hypertension

    Get PDF
    Glaucoma, the most common cause of irreversible blindness, is a neuropathy commonly initiated by pathological ocular hypertension due to unknown mechanisms of trabecular meshwork degeneration. Current antiglaucoma therapy does not target the causal trabecular pathology, which may explain why treatment failure is often observed. Here we show that the chemokine CXCL12, its truncated form SDF-1(5-67), and the receptors CXCR4 and CXCR3 are expressed in human glaucomatous trabecular tissue and a human trabecular cell line. SDF-1(5-67) is produced under the control of matrix metallo-proteinases, TNF-α, and TGF-β2, factors known to be involved in glaucoma. CXCL12 protects in vitro trabecular cells from apoptotic death via CXCR4 whereas SDF-1(5-67) induces apoptosis through CXCR3 and caspase activation. Ocular administration of SDF-1(5-67) in the rat increases intraocular pressure. In contrast, administration of a selective CXCR3 antagonist in a rat model of ocular hypertension decreases intraocular pressure, prevents retinal neurodegeneration, and preserves visual function. The protective effect of CXCR3 antagonism is related to restoration of the trabecular function. These data demonstrate that proteolytic cleavage of CXCL12 is involved in trabecular pathophysiology, and that local administration of a selective CXCR3 antagonist may be a beneficial therapeutic strategy for treating ocular hypertension and subsequent retinal degeneration

    Three-dimensional stereotactic atlas of the extracranial vasculature correlated with the intracranial vasculature, cranial nerves, skull and muscles

    No full text
    Our objective was to construct a 3D, interactive, and reference atlas of the extracranial vasculature spatially correlated with the intracranial blood vessels, cranial nerves, skull, glands, and head muscles. The atlas has been constructed from multiple 3T and 7T magnetic resonance angiogram (MRA) brain scans, and 3T phase contrast and inflow MRA neck scans of the same specimen in the following steps: vessel extraction from the scans, building 3D tubular models of the vessels, spatial registration of the extra- and intracranial vessels, vessel editing, vessel naming and color-coding, vessel simplification, and atlas validation. This new atlas contains 48 names of the extracranial vessels (25 arterial and 23 venous) and it has been integrated with the existing brain atlas. The atlas is valuable for medical students and residents to easily get familiarized with the extracranial vasculature with a few clicks; is useful for educators to prepare teaching materials; and potentially can serve as a reference in the diagnosis of vascular disease and treatment, including craniomaxillofacial surgeries and radiologic interventions of the face and neck
    corecore