1 research outputs found
Etching and Narrowing of Graphene from the Edges
Large scale graphene electronics desires lithographic patterning of narrow
graphene nanoribbons (GNRs) for device integration. However, conventional
lithography can only reliably pattern ~20nm wide GNR arrays limited by
lithography resolution, while sub-5nm GNRs are desirable for high on/off ratio
field-effect transistors (FETs) at room temperature. Here, we devised a gas
phase chemical approach to etch graphene from the edges without damaging its
basal plane. The reaction involved high temperature oxidation of graphene in a
slightly reducing environment to afford controlled etch rate (\leq ~1nm/min).
We fabricated ~20-30nm wide GNR arrays lithographically, and used the gas phase
etching chemistry to narrow the ribbons down to <10nm. For the first time, high
on/off ratio up to ~10^4 was achieved at room temperature for FETs built with
sub-5nm wide GNR semiconductors derived from lithographic patterning and
narrowing. Our controlled etching method opens up a chemical way to control the
size of various graphene nano-structures beyond the capability of top-down
lithography.Comment: 18 pages, 4 figures, to appear in Nature Chemistr