5 research outputs found

    iTRAQ Quantitative Proteomic Analysis of Vitreous from Patients with Retinal Detachment

    Get PDF
    Rhegmatogenous retinal detachment (RRD) is a potentially blinding condition characterized by a physical separation between neurosensory retina and retinal pigment epithelium. Quantitative proteomics can help to understand the changes that occur at the cellular level during RRD, providing additional information about the molecular mechanisms underlying its pathogenesis. In the present study, iTRAQ labeling was combined with two-dimensional LC-ESI-MS/MS to find expression changes in the proteome of vitreous from patients with RRD when compared to control samples. A total of 150 proteins were found differentially expressed in the vitreous of patients with RRD, including 96 overexpressed and 54 underexpressed. Several overexpressed proteins, several such as glycolytic enzymes (fructose-bisphosphate aldolase A, gamma-enolase, and phosphoglycerate kinase 1), glucose transporters (GLUT-1), growth factors (metalloproteinase inhibitor 1), and serine protease inhibitors (plasminogen activator inhibitor 1) are regulated by HIF-1, which suggests that HIF-1 signaling pathway can be triggered in response to RRD. Also, the accumulation of photoreceptor proteins, including phosducin, rhodopsin, and s-arrestin, and vimentin in vitreous may indicate that photoreceptor degeneration occurs in RRD. Also, the accumulation of photoreceptor proteins, including phosducin, rhodopsin, and s-arrestin, and vimentin in vitreous may indicate that photoreceptor degeneration occurs in RRD. Nevertheless, the differentially expressed proteins found in this study suggest that different mechanisms are activated after RRD to promote the survival of retinal cells through complex cellular responses.CENTRO-07-ST24-FEDER-002014; POCI-01-0145-FEDER-007491; CNB-CSIC proteomics lab is a member of ProteoRed, supported by PRB2-ISCIII grant [PT13/0001]; Novartis Farma-Produtos Farmacêuticos; PhD fellowship of Sciences Faculty financed by ICI and Santander.info:eu-repo/semantics/publishedVersio

    Refinement of two-dimensional electrophoresis for vitreous proteome profiling using an artificial neural network

    No full text
    Despite technological advances, two-dimensional electrophoresis (2DE) of biological fluids, such as vitreous, remains a major challenge. In this study, artificial neural network was applied to optimize the recovery of vitreous proteins and its detection by 2DE analysis through the combination of several solubilizing agents (CHAPS, Genapol, DTT, IPG buffer), temperature, and total voltage. The highest protein recovery (94.9% ± 4.5) was achieved using 4% (w/v) CHAPS, 0.1% (v/v) Genapol, 20 mM DTT, and 2% (v/v) IPG buffer. Two iterations were required to achieve an optimized response (580 spots) using 4% (w/v) CHAPS, 0.2% (v/v) Genapol, 60 mM DTT, and 0.5% (v/v) IPG buffer at 35 kVh and 25 °C, representing a 2.4-fold improvement over the standard initial conditions of the experimental design. The analysis of depleted vitreous using the optimized protocol resulted in an additional 1.3-fold increment in protein detection over the optimal output, with an average of 761 spots detected in vitreous from different vitreoretinopathies. Our results clearly indicate the importance of combining the appropriate amount of solubilizing agents with a suitable control of the temperature and voltage to obtain high-quality gels. The high-throughput of this model provides an effective starting point for the optimization of 2DE protocols. This experimental design can be adapted to other types of matrices. Graphical abstract.CENTRO-07-ST24-FEDER-002014; CNB-CSIC is supported by grant PT13/0001, of the PE I +D+i 2013–2016, funded by ISCIII and FEDER.info:eu-repo/semantics/publishedVersio

    Microbial lipases and their industrial applications: a comprehensive review

    No full text
    corecore