2 research outputs found

    Delayed eruption of permanent dentition and maxillary contraction in patients with cleidocranial dysplasia: review and report of a family

    Get PDF
    Introduction. Cleidocranial dysplasia (CCD) is an inherited disease caused by mutations in the RUNX2 gene on chromosome 6p21. This pathology, autosomal dominant or caused by a spontaneous genetic mutation, is present in one in one million individuals, with complete penetrance and widely variable expressivity. Aim. To identify the incidence of these clinical findings in the report of the literature by means of PubMed interface from 2002 to 2015, with the related keywords. The report of local patients presents a clinical example, related to the therapeutic approach. Results and Discussions. The PubMed research resulted in 122 articles. All the typical signs were reported in all presented cases. The maxilla was hypoplastic in 94% of the patients. Missing of permanent teeth was found in two cases: one case presented a class II jaw relationship, instead of class III malocclusion. Similar findings were present in our cohort. Conclusion. CCD is challenging for both the dental team and the patient. The treatment requires a multidisciplinary approach. Further studies are required to better understand the cause of this disease. According to this review, a multistep approach enhances the possibilities to achieve the recovery of the most possible number of teeth, as such to obtain a good occlusion and a better aesthetic

    Genetic basis of non-syndromic anomalies of human tooth number

    No full text
    Teeth organogenesis develops through a well-ordered series of inductive events involving genes and BMP, FGF, SHH and WNT represent the main signalling pathways that regulate epithelial-mesenchymal interactions. Moreover, progress in genetics and molecular biology indicates that more than 300 genes are involved in different phases of teeth development. Mutations in genes involved in odontogenesis are responsible for many dental anomalies, including a number of dental anomalies that can be associated with other systemic skeletal or organic manifestations (syndromic dental anomalies) or not (non-syndromic dental anomalies). The knowledge of the genetic development mechanisms of the latter is of major interest. Understanding the mechanisms of pathogenesis of non-syndromic teeth anomalies would also clarify the role of teeth in craniofacial development, and this would represent an important contribution to the diagnosis, treatment and prognosis of congenital malformations, and the eventual association to other severe diseases. Future research in this area is likely to lead to the development of tests for doctors to formulate an early diagnosis of these anomalies. © 2012 Elsevier Ltd
    corecore