107 research outputs found
The SAMI Galaxy Survey: Stellar population radial gradients in early-type galaxies
We study the internal radial gradients of the stellar populations in a sample
comprising 522 early-type galaxies (ETGs) from the SAMI (Sydney- AAO
Multi-object Integral field spectrograph) Galaxy Survey. We stack the spectra
of individual spaxels in radial bins, and derive basic stellar population
properties: total metallicity ([Z/H]), [Mg/Fe], [C/Fe] and age. The radial
gradient () and central value of the fits (evaluated at R/4) are
compared against a set of six possible drivers of the trends. We find that
velocity dispersion () - or, equivalently gravitational potential - is
the dominant driver of the chemical composition gradients. Surface mass density
is also correlated with the trends, especially with stellar age. The decrease
of [Mg/Fe] with increasing is contrasted by a rather shallow
dependence of [Z/H] with (although this radial gradient is
overall rather steep). This result, along with a shallow age slope at the
massive end, imposes stringent constraints on the progenitors of the
populations that contribute to the formation of the outer envelopes of ETGs.
The SAMI sample is split between a 'field' sample and a cluster sample. Only
weak environment-related differences are found, most notably a stronger
dependence of central total metallicity ([Z/H]) with , along
with a marginal trend of [Z/H] to steepen in cluster galaxies, a result
that is not followed by [Mg/Fe]. The results presented here serve as
constraints on numerical models of the formation and evolution of ETGs.Comment: 14 pages, 9 figures, 3 tables. Submitted to MNRA
The Sun was not born in M 67
Using the most recent proper-motion determination of the old,
Solar-metallicity, Galactic open cluster M 67, in orbital computations in a
non-axisymmetric model of the Milky Way, including a bar and 3D spiral arms, we
explore the possibility that the Sun once belonged to this cluster. We have
performed Monte Carlo numerical simulations to generate the present-day orbital
conditions of the Sun and M 67, and all the parameters in the Galactic model.
We compute 3.5 \times 10^5 pairs of orbits Sun-M 67 looking for close
encounters in the past with a minimum distance approach within the tidal radius
of M 67. In these encounters we find that the relative velocity between the Sun
and M 67 is larger than 20 km/s. If the Sun had been ejected from M 67 with
this high velocity by means of a three-body encounter, this interaction would
destroy an initial circumstellar disk around the Sun, or disperse its already
formed planets. We also find a very low probability, much less than 10^-7, that
the Sun was ejected from M 67 by an encounter of this cluster with a giant
molecular cloud. This study also excludes the possibility that the Sun and M 67
were born in the same molecular cloud. Our dynamical results convincingly
demonstrate that M67 could not have been the birth cluster of our Solar System.Comment: Astronomical Journal accepted (35 pages, 9 figures
Building galaxies by accretion and in-situ star formation
We examine galaxy formation in a cosmological AMR simulation, which includes
two high resolution boxes, one centered on a 3 \times 10^14 M\odot cluster, and
one centered on a void. We examine the evolution of 611 massive (M\ast >
10^10M\odot) galaxies. We find that the fraction of the final stellar mass
which is accreted from other galaxies is between 15 and 40% and increases with
stellar mass. The accreted fraction does not depend strongly on environment at
a given stellar mass, but the galaxies in groups and cluster environments are
older and underwent mergers earlier than galaxies in lower density
environments. On average, the accreted stars are ~2.5 Gyrs older, and ~0.15 dex
more metal poor than the stars formed in-situ. Accreted stellar material
typically lies on the outskirts of galaxies; the average half-light radius of
the accreted stars is 2.6 times larger than that of the in-situ stars. This
leads to radial gradients in age and metallicity for massive galaxies, in
qualitative agreement with observations. Massive galaxies grow by mergers at a
rate of approximately 2.6% per Gyr. These mergers have a median (mass-weighted)
mass ratio less than 0.26 \pm 0.21, with an absolute lower limit of 0.20, for
galaxies with M\ast ~ 10^12 M\odot. This suggests that major mergers do not
dominate in the accretion history of massive galaxies. All of these results
agree qualitatively with results from SPH simulations by Oser et al. (2010,
2012).Comment: 18 pages, 12 figures, submitted to MNRA
Abundance ratios and IMF slopes in the dwarf elliptical galaxy NGC 1396 with MUSE
Deep observations of the dwarf elliptical (dE) galaxy NGC 1396 (MV = −16.60, Mass ~4 × 10^8 M�), located in the Fornax cluster, have been performed with the VLT/ MUSE spectrograph in the wavelength region from 4750 − 9350 Å. In this paper we present a stellar population analysis studying chemical abundances, the star formation history (SFH) and the stellar initial mass function (IMF) as a function of galacto-centric distance. Different, independent ways to analyse the stellar populations result in a luminosity-weighted age of ∼ 6 Gyr and a metallicity [Fe/H]∼ −0.4, similar to other dEs of similar mass. We find unusually overabundant values of [Ca/Fe] ∼ +0.1, and under-abundant Sodium, with [Na/Fe] values around −0.1, while [Mg/Fe] is overabundant at all radii, increasing from ∼ +0.1 in the centre to ∼ +0.2 dex. We notice a significant metallicity and age gradient within this dwarf galaxy.
To constrain the stellar IMF of NGC 1396, we find that the IMF of NGC 1396 is consistent with either a Kroupa-like or a top-heavy distribution, while a bottom-heavy IMF is firmly ruled out.
An analysis of the abundance ratios, and a comparison with galaxies in the Local Group, shows that the chemical enrichment history of NGC 1396 is similar to the Galactic disc, with an extended star formation history. This would be the case if the galaxy originated from a LMC-sized dwarf galaxy progenitor, which would lose its gas while falling into the Fornax cluster
Longitudinal Study of Recurrent Metastatic Melanoma Cell Lines Underscores the Individuality of Cancer Biology.
Recurrent metastatic melanoma provides a unique opportunity to analyze disease evolution in metastatic cancer. Here, we followed up eight patients with an unusually prolonged history of metastatic melanoma, who developed a total of 26 recurrences over several years. Cell lines derived from each metastasis were analyzed by comparative genomic hybridization and global transcript analysis. We observed that conserved, patient-specific characteristics remain stable in recurrent metastatic melanoma even after years and several recurrences. Differences among individual patients exceeded within-patient lesion variability, both at the DNA copy number (P<0.001) and RNA gene expression level (P<0.001). Conserved patient-specific traits included expression of several cancer/testis antigens and the c-kit proto-oncogene throughout multiple recurrences. Interestingly, subsequent recurrences of different patients did not display consistent or convergent changes toward a more aggressive disease phenotype. Finally, sequential recurrences of the same patient did not descend progressively from each other, as irreversible mutations such as homozygous deletions were frequently not inherited from previous metastases. This study suggests that the late evolution of metastatic melanoma, which markedly turns an indolent disease into a lethal phase, is prone to preserve case-specific traits over multiple recurrences and occurs through a series of random events that do not follow a consistent stepwise process.Journal of Investigative Dermatology advance online publication, 2 January 2014; doi:10.1038/jid.2013.495
A review of elliptical and disc galaxy structure, and modern scaling laws
A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their
models to describe the radial distribution of stars in `nebulae'. This article
reviews the progress since then, providing both an historical perspective and a
contemporary review of the stellar structure of bulges, discs and elliptical
galaxies. The quantification of galaxy nuclei, such as central mass deficits
and excess nuclear light, plus the structure of dark matter halos and cD galaxy
envelopes, are discussed. Issues pertaining to spiral galaxies including dust,
bulge-to-disc ratios, bulgeless galaxies, bars and the identification of
pseudobulges are also reviewed. An array of modern scaling relations involving
sizes, luminosities, surface brightnesses and stellar concentrations are
presented, many of which are shown to be curved. These 'redshift zero'
relations not only quantify the behavior and nature of galaxies in the Universe
today, but are the modern benchmark for evolutionary studies of galaxies,
whether based on observations, N-body-simulations or semi-analytical modelling.
For example, it is shown that some of the recently discovered compact
elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to
appear in "Planets, Stars and Stellar
Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references
incl. many somewhat forgotten, pioneer papers. Original submission to
Springer: 07-June-201
The SAMI galaxy survey: stellar population radial gradients in early-type galaxies
We study the internal radial gradients of the stellar populations in a sample comprising 522 early-type galaxies (ETGs) from the SAMI (Sydney-AAO Multi-object Integral field spectrograph) Galaxy Survey. We stack the spectra of individual spaxels in radial bins, and derive basic stellar population properties: total metallicity ([Z/H]), [Mg/Fe], [C/Fe] and age. The radial gradient (∇) and central value of the fits (evaluated at Re/4) are compared against a set of six observables that may act as drivers of the trends. We find that velocity dispersion (σ) – or, equivalently gravitational potential – is the dominant driver of the chemical composition gradients. Surface mass density is also correlated with the trends, especially with stellar age. The decrease of ∇[Mg/Fe] with increasing σ is contrasted by a rather shallow dependence of ∇[Z/H] with σ (although this radial gradient is overall rather steep). This result, along with a shallow age slope at the massive end, imposes a substantial constraint on the progenitors of the populations that contribute to the formation of the outer envelopes of ETGs. The SAMI sample is split, by design, between ‘field’ and cluster galaxies. Only weak environment-related differences are found, most notably a stronger dependence of central total metallicity ([Z/H]e4) with σ, along with a marginal trend of ∇[Z/H] to steepen in cluster galaxies, a result that is not followed by [Mg/Fe]. The results presented here serve as stringent constraints on numerical models of the formation and evolution of ETGs.IF gratefully acknowledges support from the AAO through their
distinguished visitor programme, as well as funding from the
Royal Society. NS acknowledges support of a University of Sydney Postdoctoral Research Fellowship. Support for AMM is provided by NASA through Hubble Fellowship grant #HST-HF2-51377 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-
2655
The SAMI Galaxy Survey: Early Data Release
We present the Early Data Release of the Sydney–AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey. The SAMI Galaxy Survey is an ongoing integral field spectroscopic survey of _3400 low-redshift (z < 0:12) galaxies, covering galaxies in the field and in groups within the Galaxy And Mass Assembly (GAMA) survey regions, and a sample of galaxies in clusters. In the Early Data Release, we publicly release the fully calibrated datacubes for a representative selection of 107 galaxies drawn from the GAMA regions, along with information about these galaxies from the GAMA catalogues. All datacubes for the Early Data Release galaxies can be downloaded individually or as a set from the SAMI Galaxy Survey website. In this paper we also assess the quality of the pipeline used to reduce the SAMI data, giving metrics that quantify its performance at all stages in processing the raw data into calibrated datacubes. The pipeline gives excellent results throughout, with typical sky subtraction residuals in the continuum of 0.9–1.2 per cent, a relative flux calibration uncertainty of 4.1 per cent (systematic) plus 4.3 per cent (statistical), and atmospheric dispersion removed with an accuracy of 0:0009, less than a fifth of a spaxel
- …