78 research outputs found

    Seasonal variations of Saanen goat milk composition and the impact of climatic conditions

    Get PDF
    The aim of this research was to investigate the effect of climatic conditions and their impact on seasonal variations of physico-chemical characteristics of Saanen goat milk produced over a period of 4 years. Lactation period (early, mid and late) and year were considered as factors that influence physico-chemical composition of milk. Pearson's coefficient of correlation was calculated between the physico-chemical characteristics of milk (fat, proteins, lactose, non-fat dry matter, density, freezing point, pH, titrable acidity) and climatic condition parameters (air temperature, temperature humidity index-THI, solar radiation duration, relative humidity). Results showed that all physico-chemical characteristics of Saanen goat milk varied significantly throughout the lactation period and years. The decrease of fat, protein, non-fat dry matter and lactose content in goat milk during the mid-lactation period was more pronounced than was previously reported in the literature. The highest values for these characteristics were recorded in the late lactation period. Observed variations were explained by negative correlation between THI and the physico-chemical characteristics of Saanen goat milk. This indicated that Saanen goats were very prone to heat stress, which implied the decrease of physico-chemical characteristics during hot summers

    Histamine H4 receptor antagonism diminishes existing airway inflammation and dysfunction via modulation of Th2 cytokines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Airway remodeling and dysfunction are characteristic features of asthma thought to be caused by aberrant production of Th2 cytokines. Histamine H<sub>4 </sub>receptor (H<sub>4</sub>R) perturbation has previously been shown to modify acute inflammation and Th2 cytokine production in a murine model of asthma. We examined the ability of H<sub>4</sub>R antagonists to therapeutically modify the effects of Th2 cytokine production such as goblet cell hyperplasia (GCH), and collagen deposition in a sub-chronic model of asthma. In addition, effects on Th2 mediated lung dysfunction were also determined.</p> <p>Methods</p> <p>Mice were sensitized to ovalbumin (OVA) followed by repeated airway challenge with OVA. After inflammation was established mice were dosed with the H<sub>4</sub>R antagonist, JNJ 7777120, or anti-IL-13 antibody for comparison. Airway hyperreactivity (AHR) was measured, lungs lavaged and tissues collected for analysis.</p> <p>Results</p> <p>Therapeutic H<sub>4</sub>R antagonism inhibited T cell infiltration in to the lung and decreased Th2 cytokines IL-13 and IL-5. IL-13 dependent remodeling parameters such as GCH and lung collagen were reduced. Intervention with H<sub>4</sub>R antagonist also improved measures of central and peripheral airway dysfunction.</p> <p>Conclusions</p> <p>These data demonstrate that therapeutic H<sub>4</sub>R antagonism can significantly ameliorate allergen induced, Th2 cytokine driven pathologies such as lung remodeling and airway dysfunction. The ability of H<sub>4</sub>R antagonists to affect these key manifestations of asthma suggests their potential as novel human therapeutics.</p

    Exposure to Candida albicans Polarizes a T-Cell Driven Arthritis Model towards Th17 Responses, Resulting in a More Destructive Arthritis

    Get PDF
    BACKGROUND: Fungal components have been shown very effective in generating Th17 responses. We investigated whether exposure to a minute amount of C. albicans in the arthritic joint altered the local cytokine environment, leading to enhanced Th17 expansion and resulting in a more destructive arthritis. METHODOLOGY: Chronic SCW arthritis was induced by repeated injection with Streptococcus pyogenes (SCW) cell wall fragments into the knee joint of C57Bl/6 mice, alone or in combination with the yeast of C. albicans or Zymosan A. During the chronic phase of the arthritis, the cytokine levels, mRNA expression and histopathological analysis of the joints were performed. To investigate the phenotype of the IL-17 producing T-cells, synovial cells were isolated and analyzed by flowcytometry. PRINCIPAL FINDINGS: Intra-articular injection of either Zymosan A or C. albicans on top of the SCW injection both resulted in enhanced joint swelling and inflammation compared to the normal SCW group. However, only the addition of C. albicans during SCW arthritis resulted in severe chondrocyte death and enhanced destruction of cartilage and bone. Additionally, exposure to C. albicans led to increased IL-17 in the arthritic joint, which was accompanied by an increased synovial mRNA expression of T-bet and RORgammaT. Moreover, the C. albicans-injected mice had significantly more Th17 cells in the synovium, of which a large population also produced IFN-gamma. CONCLUSION: This study clearly shows that minute amounts of fungal components, like C. albicans, are very potent in interfering with the local cytokine environment in an arthritic joint, thereby polarizing arthritis towards a more destructive phenotype

    Додатковий том «Словника української мови»

    Get PDF
    У статті подано історію роботи над Додатковим томом «Словника української мови» в 11-ти томах, описано джерела наповнення реєстру, структуру словникових статей, наведено приклади розробки статей різного типу – як нововведених слів, так і таких, що були в «Словнику української мови» і зазнали доповнення. Завдання лексикографів, які працювали над Додатковим томом, – відобразити динаміку лексичного шару української мови 1980-их рр. ХХ ст. – початку ХХІ ст. з акцентуванням її інноваційних й актуалізованих аспектів

    A Novel Pseudopodial Component of the Dendritic Cell Anti-Fungal Response: The Fungipod

    Get PDF
    Fungal pathologies are seen in immunocompromised and healthy humans. C-type lectins expressed on immature dendritic cells (DC) recognize fungi. We report a novel dorsal pseudopodial protrusion, the “fungipod”, formed by DC after contact with yeast cell walls. These structures have a convoluted cell-proximal end and a smooth distal end. They persist for hours, exhibit noticeable growth and total 13.7±5.6 µm long and 1.8±0.67 µm wide at the contact. Fungipods contain clathrin and an actin core surrounded by a sheath of cortactin. The actin cytoskeleton, but not microtubules, is required for fungipod integrity and growth. An apparent rearward flow (225±55 nm/second) exists from the zymosan contact site into the distal fungipod. The phagocytic receptor Dectin-1 is not required for fungipod formation, but CD206 (Mannose Receptor) is the generative receptor for these protrusions. The human pathogen Candida parapsilosis induces DC fungipod formation strongly, but the response is species specific since the related fungal pathogens Candida tropicalis and Candida albicans induce very few and no fungipods, respectively. Our findings show that fungipods are dynamic actin-driven cellular structures involved in fungal recognition by DC. They may promote yeast particle phagocytosis by DC and are a specific response to large (i.e., 5 µm) particulate ligands. Our work also highlights the importance of this novel protrusive structure to innate immune recognition of medically significant Candida yeasts in a species specific fashion

    Protection by Anti-β-Glucan Antibodies Is Associated with Restricted β-1,3 Glucan Binding Specificity and Inhibition of Fungal Growth and Adherence

    Get PDF
    Anti-β-glucan antibodies elicited by a laminarin-conjugate vaccine confer cross-protection to mice challenged with major fungal pathogens such as Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans. To gain insights into protective β-glucan epitope(s) and protection mechanisms, we studied two anti-β-glucan monoclonal antibodies (mAb) with identical complementarity-determining regions but different isotypes (mAb 2G8, IgG2b and mAb 1E12, IgM). C. albicans, the most relevant fungal pathogen for humans, was used as a model

    Activation of Human Monocytes by Live Borrelia burgdorferi Generates TLR2-Dependent and -Independent Responses Which Include Induction of IFN-β

    Get PDF
    It is widely believed that innate immune responses to Borrelia burgdorferi (Bb) are primarily triggered by the spirochete's outer membrane lipoproteins signaling through cell surface TLR1/2. We recently challenged this notion by demonstrating that phagocytosis of live Bb by peripheral blood mononuclear cells (PBMCs) elicited greater production of proinflammatory cytokines than did equivalent bacterial lysates. Using whole genome microarrays, we show herein that, compared to lysates, live spirochetes elicited a more intense and much broader transcriptional response involving genes associated with diverse cellular processes; among these were IFN-β and a number of interferon-stimulated genes (ISGs), which are not known to result from TLR2 signaling. Using isolated monocytes, we demonstrated that cell activation signals elicited by live Bb result from cell surface interactions and uptake and degradation of organisms within phagosomes. As with PBCMs, live Bb induced markedly greater transcription and secretion of TNF-α, IL-6, IL-10 and IL-1β in monocytes than did lysates. Secreted IL-18, which, like IL-1β, also requires cleavage by activated caspase-1, was generated only in response to live Bb. Pro-inflammatory cytokine production by TLR2-deficient murine macrophages was only moderately diminished in response to live Bb but was drastically impaired against lysates; TLR2 deficiency had no significant effect on uptake and degradation of spirochetes. As with PBMCs, live Bb was a much more potent inducer of IFN-β and ISGs in isolated monocytes than were lysates or a synthetic TLR2 agonist. Collectively, our results indicate that the enhanced innate immune responses of monocytes following phagocytosis of live Bb have both TLR2-dependent and -independent components and that the latter induce transcription of type I IFNs and ISGs

    Creating and curating an archive: Bury St Edmunds and its Anglo-Saxon past

    Get PDF
    This contribution explores the mechanisms by which the Benedictine foundation of Bury St Edmunds sought to legitimise and preserve their spurious pre-Conquest privileges and holdings throughout the Middle Ages. The archive is extraordinary in terms of the large number of surviving registers and cartularies which contain copies of Anglo-Saxon charters, many of which are wholly or partly in Old English. The essay charts the changing use to which these ancient documents were put in response to threats to the foundation's continued enjoyment of its liberties. The focus throughout the essay is to demonstrate how pragmatic considerations at every stage affects the development of the archive and the ways in which these linguistically challenging texts were presented, re-presented, and represented during the Abbey’s history

    NADPH oxidase of human dendritic cells: role in candida albicans killing and regulation by interferons, dectin-1 and cd206

    No full text
    Human monocyte-derived dendritic cells (DC) express the enzyme NADPH oxidase, responsible for ROS production. We show that Candida albicans did not activate NADPH oxidase in DC, and was poorly killed by these cells. However, Candida-killing activity increased upon DC stimulation with the NADPH oxidase activator PMA and was further enhanced by DC treatment with IFN-gamma or IFN-alpha. This fungicidal activity took place at high DC-to-Candida ratio, but decreased at low DC-to-yeast ratio, when Candida inhibited the NADPH oxidase by contrasting the assembly of the enzyme on DC plasma membrane. The NADPH oxidase inhibitor diphenyliodonium chloride abrogated the PMA-dependent DC candidacidal capacity. Engagement of beta-glucan receptor dectin-1 induced NADPH oxidase activation in DC that was depressed by mannose-binding receptor CD206 costimulation. Candida was internalized by DC through mannose-binding receptors, but not through dectin-1, thus explaining why Candida did not elicit NADPH oxidase activity. Our results indicate that NADPH oxidase is involved in DC Candida-killing activity, which is increased by IFN. However, Candida escapes the oxidative damage by inhibiting NADPH oxidase and by entering DC through receptors not involved in NADPH oxidase activatio
    corecore