61 research outputs found

    Harmonization of Zika neutralization assays by using the WHO International Standard for anti-Zika virus antibody

    Get PDF
    During outbreaks of emerging viruses, such as the Zika outbreak in 2015–2016, speed and accuracy in detection of infection are critical factors to control the spread of the disease; often serological and diagnostic methods for emerging viruses are not well developed and validated. Thus, vaccines and treatments are difficult to evaluate due to the lack of comparable methods. In this study, we show how the 1st WHO International Standard for anti-Zika antibody was able to harmonize the neutralization titres of a panel of serological Zika-positive samples from laboratories worldwide. Expression of the titres in International Unit per millilitre reduced the inter-laboratory variance, allowing for greater comparability between laboratories. We advocate the use of the International Standard for anti-Zika virus antibodies for the calibration of neutralization assays to create a common language, which will permit a clear evaluation of the results of different clinical trials and expedite the vaccine/treatment development

    Measurement of the CP-violating phase ϕs and the Bs0 meson decay width difference with Bs0 → J/ψϕ decays in ATLAS

    Get PDF
    A measurement of the Bs0 decay parameters in the Bs0 → J/ψϕ channel using an integrated luminosity of 14.3 fb−1 collected by the ATLAS detector from 8 TeV pp collisions at the LHC is presented. The measured parameters include the CP -violating phase ϕs, the decay width Γs and the width difference between the mass eigenstates ΔΓs. The values measured for the physical parameters are statistically combined with those from 4.9 fb−1 of 7 TeV data, leading to the following: ϕ s =−0.090±0.078(stat.)±0.041(syst.)rad ΔΓ s =0.085±0.011(stat.)±0.007(syst.)ps −1 Γ s =0.675±0.003(stat.)±0.003(syst.)ps −1 In the analysis the parameter ΔΓs is constrained to be positive. Results for ϕs and ΔΓs are also presented as 68% and 95% likelihood contours in the ϕs-ΔΓs plane. Also measured in this decay channel are the transversity amplitudes and corresponding strong phases. All measurements are in agreement with the Standard Model predictions

    Measurement of the production cross-section of a single top quark in association with a W boson at 8 TeV with the ATLAS experiment

    Get PDF
    The cross-section for the production of a single top quark in association with a W boson in proton-proton collisions at s√=8TeV is measured. The dataset corresponds to an integrated luminosity of 20.3 fb−1, collected by the ATLAS detector in 2012 at the Large Hadron Collider at CERN. Events containing two leptons and one central b-jet are selected. The W t signal is separated from the backgrounds using boosted decision trees, each of which combines a number of discriminating variables into one classifier. Production of W t events is observed with a significance of 7.7σ. The cross-section is extracted in a profile likelihood fit to the classifier output distributions. The W t cross-section, inclusive of decay modes, is measured to be 23.0 ± 1.3(stat.)− 3.5+ 3.2(syst.)±1.1(lumi.) pb. The measured cross-section is used to extract a value for the CKM matrix element |Vtb| of 1.01 ± 0.10 and a lower limit of 0.80 at the 95% confidence level. The cross-section for the production of a top quark and a W boson is also measured in a fiducial acceptance requiring two leptons with pT> 25 GeV and |η| 20 GeV and |η|  20 GeV, including both W t and top-quark pair events as signal. The measured value of the fiducial cross-section is 0.85 ± 0.01(stat.)− 0.07+ 0.07(syst.)±0.03(lumi.) pb

    Measurement of the differential cross-section of highly boosted top quarks as a function of their transverse momentum in s =8 TeV proton-proton collisions using the ATLAS detector

    Get PDF
    The differential cross-section for pair production of top quarks with high transverse momentum is measured in 20.3  fb−1 of proton-proton collisions at a center-of-mass energy of 8 TeV. The measurement is performed for tt¯ events in the lepton+jets channel. The cross-section is reported as a function of the hadronically decaying top quark transverse momentum for values above 300 GeV. The hadronically decaying top quark is reconstructed as an anti-kt jet with radius parameter R=1.0 and identified with jet substructure techniques. The observed yield is corrected for detector effects to obtain a cross-section at particle level in a fiducial region close to the event selection. A parton-level cross-section extrapolated to the full phase space is also reported for top quarks with transverse momentum above 300 GeV. The predictions of a majority of next-to-leading-order and leading-order matrix-element Monte Carlo generators are found to agree with the measured cross-sections.- We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) an

    Search for dark matter produced in association with a Higgs boson decaying to two bottom quarks in pp collisions at root s=8 TeV with the ATLAS detector

    Get PDF
    This article reports on a search for dark matter pair production in association with a Higgs boson decaying to a pair of bottom quarks, using data from 20.3 fb−1 of pp collisions at a center-of-mass energy of 8 TeV collected by the ATLAS detector at the LHC. The decay of the Higgs boson is reconstructed as a high-momentum bb¯ system with either a pair of small-radius jets, or a single large-radius jet with substructure. The observed data are found to be consistent with the expected Standard Model backgrounds. Model-independent upper limits are placed on the visible cross sections for events with a Higgs boson decaying into bb¯ and large missing transverse momentum with thresholds ranging from 150 to 400 GeV. Results are interpreted using a simplified model with a Z0 gauge boson decaying into different Higgs bosons predicted in a two-Higgs-doublet model, of which the heavy pseudoscalar Higgs decays into a pair of dark matter particles. Exclusion limits are also presented for the mass scales of various effective field theory operators that describe the interaction between dark matter particles and the Higgs boson
    corecore