8 research outputs found

    Nonlocal Effects and Shrinkage of the Vortex Core Radius in YNi2B2C Probed by muSR

    Full text link
    The magnetic field distribution in the vortex state of YNi2B2C has been probed by muon spin rotation (muSR). The analysis based on the London model with nonlocal corrections shows that the vortex lattice has changed from hexagonal to square with increasing magnetic field H. At low fields the vortex core radius, rho_v(H), decreases with increasing H much steeper than what is expected from the sqrt(H) behavior of the Sommerfeld constant gamma(H), strongly suggesting that the anomaly in gamma(H) primarily arises from the quasiparticle excitations outside the vortex cores.Comment: 4 pages, 4 figures, submitted to Phys. Rev.

    Effect of electron irradiation on vortex dynamics in YBa_2Cu_3O_{7-x} single crystals

    Full text link
    We report on drastic change of vortex dynamics with increase of quenched disorder: for rather weak disorder we found a single vortex creep regime, which we attribute to a Bragg-glass phase, while for enhanced disorder we found an increase of both the depinning current and activation energy with magnetic field, which we attribute to entangled vortex phase. We also found that introduction of additional defects always increases the depinning current, but it increases activation energy only for elastic vortex creep, while it decreases activation energy for plastic vortex creep.Comment: 4 pages, 3 figures, submited to Phys. Rev.

    Dynamic Vortex Phases and Pinning in Superconductors with Twin Boundaries

    Full text link
    We investigate the pinning and driven dynamics of vortices interacting with twin boundaries using large scale molecular dynamics simulations on samples with near one million pinning sites. For low applied driving forces, the vortex lattice orients itself parallel to the twin boundary and we observe the creation of a flux gradient and vortex free region near the edges of the twin boundary. For increasing drive, we find evidence for several distinct dynamical flow phases which we characterize by the density of defects in the vortex lattice, the microscopic vortex flow patterns, and orientation of the vortex lattice. We show that these different dynamical phases can be directly related to microscopically measurable voltage - current V(I) curves and voltage noise. By conducting a series of simulations for various twin boundary parameters we derive several vortex dynamic phase diagrams.Comment: 5 figures, to appear in Phys. Rev.
    corecore