300 research outputs found
Kinetic theory for scalar fields with nonlocal quantum coherence
We derive quantum kinetic equations for scalar fields undergoing coherent
evolution either in time (coherent particle production) or in space (quantum
reflection). Our central finding is that in systems with certain space-time
symmetries, quantum coherence manifests itself in the form of new spectral
solutions for the dynamical 2-point correlation function. This spectral
structure leads to a consistent approximation for dynamical equations that
describe coherent evolution in presence of decohering collisions. We illustrate
the method by solving the bosonic Klein problem and the bound states for the
nonrelativistic square well potential. We then compare our spectral phase space
definition of particle number to other definitions in the nonequilibrium field
theory. Finally we will explicitly compute the effects of interactions to
coherent particle production in the case of an unstable field coupled to an
oscillating background.Comment: 33 pages, 7 figures, replaced with the version published in JHE
Auger de-excitation of metastable molecules at metallic surfaces
We study secondary electron emission from metallic surfaces due to Auger
de-excitation of diatomic metastable molecules. Our approach is based on an
effective model for the two active electrons involved in the process -- a
molecular electron described by a linear combination of atomic orbitals when it
is bound and a two-center Coulomb wave when it is not and a metal electron
described by the eigenfunctions of a step potential -- and employs Keldysh
Green's functions. Solving the Dyson equation for the retarded Green's function
by exponential resummation we are able to treat time-nonlocal self-energies and
to avoid the wide-band approximation.Results are presented for the
de-excitation of \NitrogenDominantMetastableState\ on aluminum and tungsten and
discussed in view of previous experimental and theoretical investigations. We
find quantitative agreement with experimental data for tungsten indicating that
the effective model captures the physics of the process quite well. For
aluminum we predict secondary electron emission due to Auger de-excitation to
be one to two orders of magnitude smaller than the one found for resonant
charge-transfer and subsequent auto-detachment.Comment: 15 pages, 9 figures, revised version using an improved
single-electron basi
Goldstone bosons and a dynamical Higgs field
Higgs inflation uses the gauge variant Higgs field as the inflaton. During
inflation the Higgs field is displaced from its minimum, which results in
associated Goldstone bosons that are apparently massive. Working in a minimally
coupled U(1) toy model, we use the closed-time-path formalism to show that
these Goldstone bosons do contribute to the one-loop effective action.
Therefore the computation in unitary gauge gives incorrect results. Our
expression for the effective action is gauge invariant upon using the
background equations of motion.Comment: 27 pages, 2 figures, published version with minor correction
Theoretical modeling of spatial and temperature dependent exciton energy in coupled quantum wells
Motivated by a recent experiment of spatial and temperature dependent average
exciton energy distribution in coupled quantum wells [S. Yang \textit{et al.},
Phys. Rev. B \textbf{75}, 033311 (2007)], we investigate the nature of the
interactions in indirect excitons. Based on the uncertainty principle, along
with a temperature and energy dependent distribution which includes both
population and recombination effects, we show that the interplay between an
attractive two-body interaction and a repulsive three-body interaction can lead
to a natural and good account for the nonmonotonic temperature dependence of
the average exciton energy. Moreover, exciton energy maxima are shown to locate
at the brightest regions, in agreement with the recent experiments. Our results
provide an alternative way for understanding the underlying physics of the
exciton dynamics in coupled quantum wells.Comment: 8 pages, 5 figure
Density fluctuations from warm inflation
Thermal fluctuations provide the main source of large scale density
perturbations in warm inflationary models of the early universe. For the first
time, general results are obtained for the power spectrum in the case when the
friction coefficient in the inflaton equation of motion depends on temperature.
A large increase in the amplitude of perturbations occurs when the friction
coefficient increases with temperature. This has to be taken into account when
constructing models of warm inflation. New results are also given for the
thermal fluctuations in the weak regime of warm inflation when the friction
coefficient is relatively small.Comment: 14 pages, 4 figures, ReVTe
Quantum Field Kinetics
Using the general framework of quantum field theory, we derive basic
equations of quantum field kinetics. The main goal of this approach is to
compute the observables associated with a quark-gluon plasma at different
stages of its evolution. We start by rewriting the integral equations for the
field correlators in different forms, depending on the relevant dynamical
features at each different stage. Next, two versions of perturbation expansion
are considered. The first is best suited for the calculation of electromagnetic
emission from chaotic, but not equilibrated, strongly interacting matter. The
second version allows one to derive evolution equations, which are
generalizations of the familiar QCD evolution equations, and provide a basis
for the calculation of the initial quark and gluon distributions after the
first hard interaction of the heavy ions.Comment: 13 pages, REVTeX, 2 postscript figures appende
Perturbative Quantum Field Theory at Positive Temperatures: An Axiomatic Approach
It is shown that the perturbative expansions of the correlation functions of
a relativistic quantum field theory at finite temperature are uniquely
determined by the equations of motion and standard axiomatic requirements,
including the KMS condition. An explicit expression as a sum over generalized
Feynman graphs is derived. The canonical formalism is not used, and the
derivation proceeds from the beginning in the thermodynamic limit. No doubling
of fields is invoked. An unsolved problem concerning existence of these
perturbative expressions is pointed out.Comment: 17pages Late
Ionization of Atoms by Intense Laser Pulses
The process of ionization of a hydrogen atom by a short infrared laser pulse
is studied in the regime of very large pulse intensity, in the dipole
approximation. Let denote the integral of the electric field of the pulse
over time at the location of the atomic nucleus. It is shown that, in the limit
where , the ionization probability approaches unity and the
electron is ejected into a cone opening in the direction of and of
arbitrarily small opening angle. Asymptotics of various physical quantities in
is studied carefully. Our results are in qualitative agreement with
experimental data reported in \cite{1,2}.Comment: 27 pages, 1 figure
Real-time gauge/gravity duality: Prescription, Renormalization and Examples
We present a comprehensive analysis of the prescription we recently put
forward for the computation of real-time correlation functions using
gauge/gravity duality. The prescription is valid for any holographic
supergravity background and it naturally maps initial and final data in the
bulk to initial and final states or density matrices in the field theory. We
show in detail how the technique of holographic renormalization can be applied
in this setting and we provide numerous illustrative examples, including the
computation of time-ordered, Wightman and retarded 2-point functions in
Poincare and global coordinates, thermal correlators and higher-point
functions.Comment: 85 pages, 13 figures; v2: added comments and reference
Real time statistical field theory
We have written a {\it Mathematica} program that calculates the integrand
corresponding to any amplitude in the closed-time-path formulation of real time
statistical field theory. The program is designed so that it can be used by
someone with no previous experience with {\it Mathematica}. It performs the
contractions over the tensor indices that appear in real time statistical field
theory and gives the result in the 1-2, Keldysh or RA basis. We have used the
program to calculate the ward identity for the QED 3-point function, the QED
4-point function for two photons and two fermions, and the QED 5-point function
for three photons and two fermions. In real time statistical field theory,
there are seven 3-point functions, 15 4-point functions and 31 5-point
functions. We produce a table that gives the results for all of these
functions. In addition, we give a simple general expression for the KMS
conditions between -point green functions and vertex functions, in both the
Keldysh and RA basesComment: 25 pages, 12 figure
- …