300 research outputs found

    Kinetic theory for scalar fields with nonlocal quantum coherence

    Full text link
    We derive quantum kinetic equations for scalar fields undergoing coherent evolution either in time (coherent particle production) or in space (quantum reflection). Our central finding is that in systems with certain space-time symmetries, quantum coherence manifests itself in the form of new spectral solutions for the dynamical 2-point correlation function. This spectral structure leads to a consistent approximation for dynamical equations that describe coherent evolution in presence of decohering collisions. We illustrate the method by solving the bosonic Klein problem and the bound states for the nonrelativistic square well potential. We then compare our spectral phase space definition of particle number to other definitions in the nonequilibrium field theory. Finally we will explicitly compute the effects of interactions to coherent particle production in the case of an unstable field coupled to an oscillating background.Comment: 33 pages, 7 figures, replaced with the version published in JHE

    Auger de-excitation of metastable molecules at metallic surfaces

    Full text link
    We study secondary electron emission from metallic surfaces due to Auger de-excitation of diatomic metastable molecules. Our approach is based on an effective model for the two active electrons involved in the process -- a molecular electron described by a linear combination of atomic orbitals when it is bound and a two-center Coulomb wave when it is not and a metal electron described by the eigenfunctions of a step potential -- and employs Keldysh Green's functions. Solving the Dyson equation for the retarded Green's function by exponential resummation we are able to treat time-nonlocal self-energies and to avoid the wide-band approximation.Results are presented for the de-excitation of \NitrogenDominantMetastableState\ on aluminum and tungsten and discussed in view of previous experimental and theoretical investigations. We find quantitative agreement with experimental data for tungsten indicating that the effective model captures the physics of the process quite well. For aluminum we predict secondary electron emission due to Auger de-excitation to be one to two orders of magnitude smaller than the one found for resonant charge-transfer and subsequent auto-detachment.Comment: 15 pages, 9 figures, revised version using an improved single-electron basi

    Goldstone bosons and a dynamical Higgs field

    Full text link
    Higgs inflation uses the gauge variant Higgs field as the inflaton. During inflation the Higgs field is displaced from its minimum, which results in associated Goldstone bosons that are apparently massive. Working in a minimally coupled U(1) toy model, we use the closed-time-path formalism to show that these Goldstone bosons do contribute to the one-loop effective action. Therefore the computation in unitary gauge gives incorrect results. Our expression for the effective action is gauge invariant upon using the background equations of motion.Comment: 27 pages, 2 figures, published version with minor correction

    Theoretical modeling of spatial and temperature dependent exciton energy in coupled quantum wells

    Full text link
    Motivated by a recent experiment of spatial and temperature dependent average exciton energy distribution in coupled quantum wells [S. Yang \textit{et al.}, Phys. Rev. B \textbf{75}, 033311 (2007)], we investigate the nature of the interactions in indirect excitons. Based on the uncertainty principle, along with a temperature and energy dependent distribution which includes both population and recombination effects, we show that the interplay between an attractive two-body interaction and a repulsive three-body interaction can lead to a natural and good account for the nonmonotonic temperature dependence of the average exciton energy. Moreover, exciton energy maxima are shown to locate at the brightest regions, in agreement with the recent experiments. Our results provide an alternative way for understanding the underlying physics of the exciton dynamics in coupled quantum wells.Comment: 8 pages, 5 figure

    Density fluctuations from warm inflation

    Full text link
    Thermal fluctuations provide the main source of large scale density perturbations in warm inflationary models of the early universe. For the first time, general results are obtained for the power spectrum in the case when the friction coefficient in the inflaton equation of motion depends on temperature. A large increase in the amplitude of perturbations occurs when the friction coefficient increases with temperature. This has to be taken into account when constructing models of warm inflation. New results are also given for the thermal fluctuations in the weak regime of warm inflation when the friction coefficient is relatively small.Comment: 14 pages, 4 figures, ReVTe

    Quantum Field Kinetics

    Get PDF
    Using the general framework of quantum field theory, we derive basic equations of quantum field kinetics. The main goal of this approach is to compute the observables associated with a quark-gluon plasma at different stages of its evolution. We start by rewriting the integral equations for the field correlators in different forms, depending on the relevant dynamical features at each different stage. Next, two versions of perturbation expansion are considered. The first is best suited for the calculation of electromagnetic emission from chaotic, but not equilibrated, strongly interacting matter. The second version allows one to derive evolution equations, which are generalizations of the familiar QCD evolution equations, and provide a basis for the calculation of the initial quark and gluon distributions after the first hard interaction of the heavy ions.Comment: 13 pages, REVTeX, 2 postscript figures appende

    Perturbative Quantum Field Theory at Positive Temperatures: An Axiomatic Approach

    Get PDF
    It is shown that the perturbative expansions of the correlation functions of a relativistic quantum field theory at finite temperature are uniquely determined by the equations of motion and standard axiomatic requirements, including the KMS condition. An explicit expression as a sum over generalized Feynman graphs is derived. The canonical formalism is not used, and the derivation proceeds from the beginning in the thermodynamic limit. No doubling of fields is invoked. An unsolved problem concerning existence of these perturbative expressions is pointed out.Comment: 17pages Late

    Ionization of Atoms by Intense Laser Pulses

    Full text link
    The process of ionization of a hydrogen atom by a short infrared laser pulse is studied in the regime of very large pulse intensity, in the dipole approximation. Let AA denote the integral of the electric field of the pulse over time at the location of the atomic nucleus. It is shown that, in the limit where A|A| \to \infty, the ionization probability approaches unity and the electron is ejected into a cone opening in the direction of A-A and of arbitrarily small opening angle. Asymptotics of various physical quantities in A1|A|^{-1} is studied carefully. Our results are in qualitative agreement with experimental data reported in \cite{1,2}.Comment: 27 pages, 1 figure

    Real-time gauge/gravity duality: Prescription, Renormalization and Examples

    Full text link
    We present a comprehensive analysis of the prescription we recently put forward for the computation of real-time correlation functions using gauge/gravity duality. The prescription is valid for any holographic supergravity background and it naturally maps initial and final data in the bulk to initial and final states or density matrices in the field theory. We show in detail how the technique of holographic renormalization can be applied in this setting and we provide numerous illustrative examples, including the computation of time-ordered, Wightman and retarded 2-point functions in Poincare and global coordinates, thermal correlators and higher-point functions.Comment: 85 pages, 13 figures; v2: added comments and reference

    Real time statistical field theory

    Get PDF
    We have written a {\it Mathematica} program that calculates the integrand corresponding to any amplitude in the closed-time-path formulation of real time statistical field theory. The program is designed so that it can be used by someone with no previous experience with {\it Mathematica}. It performs the contractions over the tensor indices that appear in real time statistical field theory and gives the result in the 1-2, Keldysh or RA basis. We have used the program to calculate the ward identity for the QED 3-point function, the QED 4-point function for two photons and two fermions, and the QED 5-point function for three photons and two fermions. In real time statistical field theory, there are seven 3-point functions, 15 4-point functions and 31 5-point functions. We produce a table that gives the results for all of these functions. In addition, we give a simple general expression for the KMS conditions between nn-point green functions and vertex functions, in both the Keldysh and RA basesComment: 25 pages, 12 figure
    corecore