109 research outputs found

    Spin-density-wave instabilities in the organic conductor (TMTSF)_2ClO_4: Role of anion ordering

    Full text link
    We study the spin-density-wave instabilities in the quasi-one-dimensional conductor (TMTSF)_2ClO_4. The orientational order of the anions ClO_4 doubles the unit cell and leads to the presence of two electrnic bands at the Fermi level. From the Ginzburg-Landau expansion of the free energy, we determine the low-temperature phase diagram as a function of the strength of the Coulomb potential due to the anions. Upon increasing the anion potential, we first find a SDW phase corresponding to an interband pairing. This SDW phase is rapidly supressed, the metallic phase being then stable down to zero temperature. The SDW instability is restored when the anion potential becomes of the order of the hopping amplitude. The metal-SDW transition corresponds to an intraband pairing which leaves half of the Fermi surface metallic. At lower temperature, a second transition, corresponding to the other intraband pairing, takes place and opens a gap on the whole Fermi surface. We discuss the consequences of our results for the experimental phase diagram of (TMTSF)_2ClO_4 at high magnetic field.Comment: 13 pages, 10 figures, Version 2 with minor correction

    Spin relaxation and antisymmetric exchange in n-doped III-V semiconductor

    Full text link
    Recently K. Kavokin [Phys. Rev. B 64, 075305 (2001)] suggested that the Dzyaloshinskii-Moriya interaction between localized electrons governs slow spin relaxation in nn-doped GaAs in the regime close to the metal-insulator transition. We derive the correct spin Hamiltonian and apply it to the determination of spin dephasing time using the method of moments expansion. We argue that the proposed mechanism is insufficient to explain the observed values of the spin relaxation time.Comment: 5 pages, 1 figure

    Mixed-parity superconductivity in centrosymmetric crystals

    Full text link
    A weak-coupling formalism for superconducting states possessing both singlet (even parity) and triplet (odd parity) components of the order parameter in centrosymmetric crystals is developed. It is shown that the quasiparticle energy spectrum may be non-degenerate even if the triplet component is unitary. The superconducting gap of a mixed-parity state may have line nodes in the strong spin-orbit coupling limit. The pseudospin carried by the superconducting electrons is calculated, from which follows a prediction of a kink anomaly in the temperature dependence of muon spin relaxation rate. The anomaly occurs at the phase boundary between the bare triplet and mixed-parity states. The stability of mixed-parity states is discussed within Ginzburg-Landau theory. The results may have immediate application to the superconducting series Pr(Os,Ru)4Sb12.Comment: 5 pages, 2 figures. Final version accepted to PR

    Quantum correction to the Kubo formula in closed mesoscopic systems

    Full text link
    We study the energy dissipation rate in a mesoscopic system described by the parametrically-driven random-matrix Hamiltonian H[\phi(t)] for the case of linear bias \phi=vt. Evolution of the field \phi(t) causes interlevel transitions leading to energy pumping, and also smears the discrete spectrum of the Hamiltonian. For sufficiently fast perturbation this smearing exceeds the mean level spacing and the dissipation rate is given by the Kubo formula. We calculate the quantum correction to the Kubo result that reveals the original discreteness of the energy spectrum. The first correction to the system viscosity scales proportional to v^{-2/3} in the orthogonal case and vanishes in the unitary case.Comment: 4 pages, 3 eps figures, REVTeX

    Group expansions for impurities in superconductors

    Full text link
    A new method is proposed for practical calculation of the effective interaction between impurity scatterers in superconductors, based on algebraic properties of related Nambu matrices for Green functions. In particular, we show that the density of states within the s-wave gap can have a non-zero contribution (impossible either in Born and in T-matrix approximation) from non-magnetic impurities with concentration c1c \ll 1, beginning from c3\sim c^{3} order.Comment: 5 pages, 1 figur

    Impurity band in clean superconducting weak links

    Full text link
    Weak impurity scattering produces a narrow band with a finite density of states near the phase difference ϕ=π\phi =\pi in the mid-gap energy spectrum of a macroscopic superconducting weak link. The equivalent distribution of transmission coefficients of various cunducting quantum channels is found.Comment: 4 pages, 4 figures, changed conten

    Dynamic transitions between metastable states in a superconducting ring

    Full text link
    Applying the time-dependent Ginzburg-Landau equations, transitions between metastable states of a superconducting ring are investigated in the presence of an external magnetic field. It is shown that if the ring exhibits several metastable states at a particular magnetic field, the transition from one metastable state to another one is governed by both the relaxation time of the absolute value of the order parameter tau_{|psi|} and the relaxation time of the phase of the order parameter tau_{phi}. We found that the larger the ratio tau_{|psi|}tau_{phi} the closer the final state will be to the absolute minimum of the free energy, i.e. the thermodynamic equilibrium. The transition to the final state occurs through a subsequent set of single phase slips at a particular point along the ring.Comment: 7 pages, 6 figures, Revtex 4.0 styl

    Critical fluctuation conductivity in layered superconductors in strong electric field

    Full text link
    The paraconductivity, originating from critical superconducting order-parameter fluctuations in the vicinity of the critical temperature in a layered superconductor is calculated in the frame of the self-consistent Hartree approximation, for an arbitrarily strong electric field and zero magnetic field. The paraconductivity diverges less steep towards the critical temperature in the Hartree approximation than in the Gaussian one and it shows a distinctly enhanced variation with the electric field. Our results indicate that high electric fields can be effectively used to suppress order-parameter fluctuations in high-temperature superconductors.Comment: 11 pages, 2 figures, to be published in Phys. Rev.

    Charged-Surface Instability Development in Liquid Helium; Exact Solutions

    Get PDF
    The nonlinear dynamics of charged-surface instability development was investigated for liquid helium far above the critical point. It is found that, if the surface charge completely screens the field above the surface, the equations of three-dimensional (3D) potential motion of a fluid are reduced to the well-known equations describing the 3D Laplacian growth process. The integrability of these equations in 2D geometry allows the analytic description of the free-surface evolution up to the formation of cuspidal singularities at the surface.Comment: latex, 5 pages, no figure

    Phase Diagram for the Hofstadter butterfly and integer quantum Hall effect in three dimensions

    Full text link
    We give a perspective on the Hofstadter butterfly (fractal energy spectrum in magnetic fields), which we have shown to arise specifically in three-dimensional(3D) systems in our previous work. (i) We first obtain the `phase diagram' on a parameter space of the transfer energies and the magnetic field for the appearance of Hofstadter's butterfly spectrum in anisotropic crystals in 3D. (ii) We show that the orientation of the external magnetic field can be arbitrary to have the 3D butterfly. (iii) We show that the butterfly is beyond the semiclassical description. (iv) The required magnetic field for a representative organic metal is estimated to be modest (40\sim 40 T) if we adopt higher Landau levels for the butterfly. (v) We give a simpler way of deriving the topological invariants that represent the quantum Hall numbers (i.e., two Hall conductivity in 3D, σxy,σzx\sigma_{xy}, \sigma_{zx}, in units of e2/he^2/h).Comment: 8 pages, 8 figures, eps versions of the figures will be sent on request to [email protected]
    corecore