20 research outputs found
Comparison between three-dimensional linear and nonlinear tsunami generation models
The modeling of tsunami generation is an essential phase in understanding
tsunamis. For tsunamis generated by underwater earthquakes, it involves the
modeling of the sea bottom motion as well as the resulting motion of the water
above it. A comparison between various models for three-dimensional water
motion, ranging from linear theory to fully nonlinear theory, is performed. It
is found that for most events the linear theory is sufficient. However, in some
cases, more sophisticated theories are needed. Moreover, it is shown that the
passive approach in which the seafloor deformation is simply translated to the
ocean surface is not always equivalent to the active approach in which the
bottom motion is taken into account, even if the deformation is supposed to be
instantaneous.Comment: 39 pages, 16 figures; Accepted to Theoretical and Computational Fluid
Dynamics. Several references have been adde
Water waves generated by a moving bottom
Tsunamis are often generated by a moving sea bottom. This paper deals with
the case where the tsunami source is an earthquake. The linearized water-wave
equations are solved analytically for various sea bottom motions. Numerical
results based on the analytical solutions are shown for the free-surface
profiles, the horizontal and vertical velocities as well as the bottom
pressure.Comment: 41 pages, 13 figures. Accepted for publication in a book: "Tsunami
and Nonlinear Waves", Kundu, Anjan (Editor), Springer 2007, Approx. 325 p.,
170 illus., Hardcover, ISBN: 978-3-540-71255-8, available: May 200