295 research outputs found
Repression of SOX6 transcriptional activity by SUMO modification
AbstractSOX6 plays key functions in several developmental processes, including neurogenesis and skeleton formation. In this report, we show that SOX6 is modified in vitro and in vivo by small ubiquitin-related modifier (SUMO) on two distinct sites. Mutation of both sites abolished SOX6 sumoylation and increased SOX6 transcriptional activity. SUMO dependent repression of SOX6 transcription was promoted by UBC9 whereas siRNA to UBC9, cotransfection of inactive UBC9 or a SUMO protease increased SOX6 transcriptional activity. Furthermore, co-expression of SOX6 with SUMO2 results in the appearance of SOX6 in a punctate nuclear pattern that colocalized with promyelocytic leukemia protein, which was partially abolished by mutations in SOX6 sumoylation sites
Superconductivity in the two dimensional Hubbard Model.
Quasiparticle bands of the two-dimensional Hubbard model are calculated using
the Roth two-pole approximation to the one particle Green's function. Excellent
agreement is obtained with recent Monte Carlo calculations, including an
anomalous volume of the Fermi surface near half-filling, which can possibly be
explained in terms of a breakdown of Fermi liquid theory. The calculated bands
are very flat around the (pi,0) points of the Brillouin zone in agreement with
photoemission measurements of cuprate superconductors. With doping there is a
shift in spectral weight from the upper band to the lower band. The Roth method
is extended to deal with superconductivity within a four-pole approximation
allowing electron-hole mixing. It is shown that triplet p-wave pairing never
occurs. Singlet d_{x^2-y^2}-wave pairing is strongly favoured and optimal
doping occurs when the van Hove singularity, corresponding to the flat band
part, lies at the Fermi level. Nearest neighbour antiferromagnetic correlations
play an important role in flattening the bands near the Fermi level and in
favouring superconductivity. However the mechanism for superconductivity is a
local one, in contrast to spin fluctuation exchange models. For reasonable
values of the hopping parameter the transition temperature T_c is in the range
10-100K. The optimum doping delta_c lies between 0.14 and 0.25, depending on
the ratio U/t. The gap equation has a BCS-like form and (2*Delta_{max})/(kT_c)
~ 4.Comment: REVTeX, 35 pages, including 19 PostScript figures numbered 1a to 11.
Uses epsf.sty (included). Everything in uuencoded gz-compressed .tar file,
(self-unpacking, see header). Submitted to Phys. Rev. B (24-2-95
Cosmological evolution and statefinder diagnostic for new holographic dark energy model in non flat universe
In this paper, the holographic dark energy model with new infrared cut-off
proposed by Granda and Oliveros has been investigated in spatially non flat
universe. The dependency of the evolution of equation of state, deceleration
parameter and cosmological evolution of Hubble parameter on the parameters of
new HDE model are calculated. Also, the statefinder parameters and in
this model are derived and the evolutionary trajectories in plane are
plotted. We show that the evolutionary trajectories are dependent on the model
parameters of new HDE model. Eventually, in the light of SNe+BAO+OHD+CMB
observational data, we plot the evolutionary trajectories in and
planes for best fit values of the parameters of new HDE model.Comment: 11 pages, 5 figures, Accepted by Astrophys. Space Sc
Holographic dark energy in a non-flat universe with Granda-Oliveros cut-off
Motivated by Granda and Oliveros (GO) model, we generalize their work to the
non-flat case. We obtain the evolution of the dark energy density, the
deceleration and the equation of state parameters for the holographic dark
energy model in a non-flat universe with GO cut-off. In the limiting case of a
flat universe, i.e. , all results given in GO model are obtained.Comment: 11 pages, 5 figure
Interacting Ricci Dark Energy with Logarithmic Correction
Motivated by the holographic principle, it has been suggested that the dark
energy density may be inversely proportional to the area of the event
horizon of the universe. However, such a model would have a causality problem.
In this work, we consider the entropy-corrected version of the holographic dark
energy model in the non-flat FRW universe and we propose to replace the future
event horizon area with the inverse of the Ricci scalar curvature. We obtain
the equation of state (EoS) parameter , the deceleration
parameter and in the presence of interaction between Dark
Energy (DE) and Dark Matter (DM). Moreover, we reconstruct the potential and
the dynamics of the tachyon, K-essence, dilaton and quintessence scalar field
models according to the evolutionary behavior of the interacting
entropy-corrected holographic dark energy model.Comment: 24 pages, accepted for publication in 'Astrophysics and Space
Science, DOI:10.1007/s10509-012-1031-8
Origins of the Ambient Solar Wind: Implications for Space Weather
The Sun's outer atmosphere is heated to temperatures of millions of degrees,
and solar plasma flows out into interplanetary space at supersonic speeds. This
paper reviews our current understanding of these interrelated problems: coronal
heating and the acceleration of the ambient solar wind. We also discuss where
the community stands in its ability to forecast how variations in the solar
wind (i.e., fast and slow wind streams) impact the Earth. Although the last few
decades have seen significant progress in observations and modeling, we still
do not have a complete understanding of the relevant physical processes, nor do
we have a quantitatively precise census of which coronal structures contribute
to specific types of solar wind. Fast streams are known to be connected to the
central regions of large coronal holes. Slow streams, however, appear to come
from a wide range of sources, including streamers, pseudostreamers, coronal
loops, active regions, and coronal hole boundaries. Complicating our
understanding even more is the fact that processes such as turbulence,
stream-stream interactions, and Coulomb collisions can make it difficult to
unambiguously map a parcel measured at 1 AU back down to its coronal source. We
also review recent progress -- in theoretical modeling, observational data
analysis, and forecasting techniques that sit at the interface between data and
theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue
connected with a 2016 ISSI workshop on "The Scientific Foundations of Space
Weather." 44 pages, 9 figure
Functional regulation of FEN1 nuclease and its link to cancer
Flap endonuclease-1 (FEN1) is a member of the Rad2 structure-specific nuclease family. FEN1 possesses FEN, 5′-exonuclease and gap-endonuclease activities. The multiple nuclease activities of FEN1 allow it to participate in numerous DNA metabolic pathways, including Okazaki fragment maturation, stalled replication fork rescue, telomere maintenance, long-patch base excision repair and apoptotic DNA fragmentation. Here, we summarize the distinct roles of the different nuclease activities of FEN1 in these pathways. Recent biochemical and genetic studies indicate that FEN1 interacts with more than 30 proteins and undergoes post-translational modifications. We discuss how FEN1 is regulated via these mechanisms. Moreover, FEN1 interacts with five distinct groups of DNA metabolic proteins, allowing the nuclease to be recruited to a specific DNA metabolic complex, such as the DNA replication machinery for RNA primer removal or the DNA degradosome for apoptotic DNA fragmentation. Some FEN1 interaction partners also stimulate FEN1 nuclease activities to further ensure efficient action in processing of different DNA structures. Post-translational modifications, on the other hand, may be critical to regulate protein–protein interactions and cellular localizations of FEN1. Lastly, we also review the biological significance of FEN1 as a tumor suppressor, with an emphasis on studies of human mutations and mouse models
Heavy quarkonium: progress, puzzles, and opportunities
A golden age for heavy quarkonium physics dawned a decade ago, initiated by
the confluence of exciting advances in quantum chromodynamics (QCD) and an
explosion of related experimental activity. The early years of this period were
chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in
2004, which presented a comprehensive review of the status of the field at that
time and provided specific recommendations for further progress. However, the
broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles
could only be partially anticipated. Since the release of the YR, the BESII
program concluded only to give birth to BESIII; the -factories and CLEO-c
flourished; quarkonium production and polarization measurements at HERA and the
Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the
deconfinement regime. All these experiments leave legacies of quality,
precision, and unsolved mysteries for quarkonium physics, and therefore beg for
continuing investigations. The plethora of newly-found quarkonium-like states
unleashed a flood of theoretical investigations into new forms of matter such
as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the
spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b},
and b\bar{c} bound states have been shown to validate some theoretical
approaches to QCD and highlight lack of quantitative success for others. The
intriguing details of quarkonium suppression in heavy-ion collisions that have
emerged from RHIC have elevated the importance of separating hot- and
cold-nuclear-matter effects in quark-gluon plasma studies. This review
systematically addresses all these matters and concludes by prioritizing
directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K.
Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D.
Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A.
Petrov, P. Robbe, A. Vair
Contributions of gluon recombination to saturation phenomena
Parton distributions in the small region are numerically predicted by
using a modified DGLAP equation with the GRV-like input distributions. We find
that gluon recombination at twist-4 level obviously suppresses the rapid growth
of parton densities with decrease. We show that before the saturation scale
is reached, saturation and partial saturation appear in the small
behavior of parton distributions in nucleus and free proton, respectively. The
antishadowing contributions to the saturation phenomena are also discussed.Comment: 23 pages, LATEX, 22 figures, to appear in Phys. Rev.
- …