2 research outputs found

    Josephson currents through spin-active interfaces

    Full text link
    The Josephson coupling of two isotropic s-wave superconductors through a small, magnetically active junction is studied. This is done as a function of junction transparency and of the degree of spin-mixing occurring in the barrier. In the tunneling limit, the critical current shows an anomalous 1/T temperature dependence at low temperatures and for certain magnetic realizations of the junction. The behavior of the Josephson current is governed by Andreev bound states appearing within the superconducting gap and the position of these states in energy is tunable with the magnetic properties of the barrier. This study is done using the equilibrium part of the quasiclassical Zaitsev-Millis-Rainer-Sauls boundary condition for spin-active interfaces and a general solution of the boundary condition is found. This solution is a generalization of the one recently presented by Eschrig [M. Eschrig, Phys. Rev B 61, 9061 (2000)] for spin-conserving interfaces and allows an effective treatment of the problem of a superconductor in proximity to a magnetically active material.Comment: 8 pages + 3 eps figure
    corecore