161 research outputs found
Radiocarbon Date List X: Baffin Bay, Baffin Island, Iceland, Labrador Sea, and the Northern North Atlantic
Date List X contains an annotated listing of 213 radiocarbon dates determined on samples from marine and terrestrial environments. The marine samples were collected from the East Greenland, Iceland, Spitzbergen, and Norwegian margins, Baffin Bay, and Labrador Sea. The terrestrial samples were collected from Vestfirdir, Iceland and Baffin Island. The samples were submitted by INSTAAR and researchers affiliated with INSTAAR\u27s Micropaleontology Laboratory under the direction of Dr.’s John T. Andrews and Anne E. Jennings. All of the dates from marine sediment cores were determined from either shells or foraminifera (both benthic and planktic). All dates were obtained by the Accelerator Mass Spectrometry (AMS) method. Regions of concentrated marine research include: Baffin Bay, Baffin Island, Labrador Sea, East Greenland fjords, shelf and slope, Denmark Strait, the southwestern and northwestern Iceland shelves, and Vestfirdir, Iceland. The non-marine radiocarbon dates are from peat, wood, plant microfossils, and mollusc. The radiocarbon dates have been used to address a variety of research objectives such as: 1. determining the timing of northern hemisphere high latitude environmental changes including glacier advance and retreat, and 2. assessing the accuracy of a fluctuating reservoir correction. Thus, most of the dates constrain the timing, rate, and interaction of late Quaternary paleoenvironmental fluctuations in sea level, glacier extent, sediment input, and changes in ocean circulation patterns. Where significant, stratigraphic and sample contexts are presented for each core to document the basis for interpretations
The Effect of Stochastic Noise on Quantum State Transfer
We consider the effect of classical stochastic noise on control laser pulses
used in a scheme for transferring quantum information between atoms, or quantum
dots, in separate optical cavities via an optical connection between cavities.
We develop a master equation for the dynamics of the system subject to
stochastic errors in the laser pulses, and use this to evaluate the sensitivity
of the transfer process to stochastic pulse shape errors for a number of
different pulse shapes. We show that under certain conditions, the sensitivity
of the transfer to the noise depends on the pulse shape, and develop a method
for determining a pulse shape that is minimally sensitive to specific errors.Comment: 10 pages, 9 figures, to appear in Physical Review
Bacterial expression of two human aryl sulfotransferases
The effect of replacing a single codon in the N-terminal of human aryl sulfotransferase (HAST) 1 and 3 with one that is more commonly found in E. coli genes was assessed. The pKK233-2 E. coli expression vector was employed and the polymerase chain reaction (PCR) was used to introduce the 5' nucleotide substitution, at the same time maintaining the fidelity of the amino acid sequence. The data indicates that this change had a minimal effect on protein production, subcellular localization or, in the case of HAST3, catalytic activity. In general, the pKK233-2 E. coli vector has been less than optimal for expressing human sulfotransferase cDNAs. (C) 1998 Elsevier Science Ireland Ltd. All rights reserved
Long-Term Treatment of Metastatic Colorectal Cancer with Panitumumab
Colorectal cancer is one of the leading causes of cancer-related deaths worldwide. More than 30% patients present with metastases at diagnoses and will require systemic chemotherapy. In recent years many anti-EGFR targets have been developed. Among them, panitumumab, a fully human IgG2 monoclonal antibody has shown important benefits in the treatment of this disease
Naturalness and Higgs Decays in the MSSM with a Singlet
The simplest extension of the supersymmetric standard model - the addition of
one singlet superfield - can have a profound impact on the Higgs and its
decays. We perform a general operator analysis of this scenario, focusing on
the phenomenologically distinct scenarios that can arise, and not restricting
the scope to the narrow framework of the NMSSM. We reexamine decays to four b
quarks and four tau's, finding that they are still generally viable, but at the
edge of LEP limits. We find a broad set of Higgs decay modes, some new,
including those with four gluon final states, as well as more general six and
eight parton final states. We find the phenomenology of these scenarios is
dramatically impacted by operators typically ignored, specifically those
arising from D-terms in the hidden sector, and those arising from weak-scale
colored fields. In addition to sensitivity of m_Z, there are potential tunings
of other aspects of the spectrum. In spite of this, these models can be very
natural, with light stops and a Higgs as light as 82 GeV. These scenarios
motivate further analyses of LEP data as well as studies of the detection
capabilities of future colliders to the new decay channels presented.Comment: 3 figures, 1 appendix; version to appear in JHEP; typos fixed and
additional references and acknowledgements adde
Spin-based all-optical quantum computation with quantum dots: understanding and suppressing decoherence
We present an all-optical implementation of quantum computation using
semiconductor quantum dots. Quantum memory is represented by the spin of an
excess electron stored in each dot. Two-qubit gates are realized by switching
on trion-trion interactions between different dots. State selectivity is
achieved via conditional laser excitation exploiting Pauli exclusion principle.
Read-out is performed via a quantum-jump technique. We analyze the effect on
our scheme's performance of the main imperfections present in real quantum
dots: exciton decay, hole mixing and phonon decoherence. We introduce an
adiabatic gate procedure that allows one to circumvent these effects, and
evaluate quantitatively its fidelity
Dialysis initiation, modality choice, access, and prescription: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference
Globally, the number of patients undergoing maintenance dialysis is increasing, yet throughout the world there is significant variability in the practice of initiating dialysis. Factors such as availability of resources, reasons for starting dialysis, timing of dialysis initiation, patient education and preparedness, dialysis modality and access, as well as varied \u201ccountry-specific\u201d factors significantly affect patient experiences and outcomes. As the burden of end-stage kidney disease (ESKD) has increased globally, there has also been a growing recognition of the importance of patient involvement in determining the goals of care and decisions regarding treatment. In January 2018, KDIGO (Kidney Disease: Improving Global Outcomes) convened a Controversies Conference focused on dialysis initiation, including modality choice, access, and prescription. Here we present a summary of the conference discussions, including identified knowledge gaps, areas of controversy, and priorities for research. A major novel theme represented during the conference was the need to move away from a \u201cone-size-fits-all\u201d approach to dialysis and provide more individualized care that incorporates patient goals and preferences while still maintaining best practices for quality and safety. Identifying and including patient-centered goals that can be validated as quality indicators in the context of diverse health care systems to achieve equity of outcomes will require alignment of goals and incentives between patients, providers, regulators, and payers that will vary across health care jurisdictions
Altered bile acid profile in mild cognitive impairment and Alzheimer's disease: Relationship to neuroimaging and CSF biomarkers
Introduction: Bile acids (BAs) are the end products of cholesterol metabolism produced by human
and gut microbiome co-metabolism. Recent evidence suggests gut microbiota influence pathological
features of Alzheimer’s disease (AD) including neuroinflammation and amyloid-b deposition.
Method: Serum levels of 20 primary and secondary BA metabolites from the AD Neuroimaging
Initiative (n 5 1562) were measured using targeted metabolomic profiling. We assessed the association of BAs with the “A/T/N” (amyloid, tau, and neurodegeneration) biomarkers for AD: cerebrospinal fluid (CSF) biomarkers, atrophy (magnetic resonance imaging), and brain glucose
metabolism ([18F]FDG PET).
Results: Of 23 BAs and relevant calculated ratios after quality control procedures, three BA signatures were associated with CSF Ab1-42 (“A”) and three with CSF p-tau181 (“T”) (corrected P ,.05). Furthermore, three, twelve, and fourteen BA signatures were associated with CSF t-tau, glucose
metabolism, and atrophy (“N”), respectively (corrected P , .05).
Discussion: This is the first study to show serum-based BA metabolites are associated with “A/T/N”
AD biomarkers, providing further support for a role of BA pathways in AD pathophysiology. Prospective clinical observations and validation in model systems are needed to assess causality and specific mechanisms underlying this association
Comprehensive analysis of epigenetic clocks reveals associations between disproportionate biological ageing and hippocampal volume
The concept of age acceleration, the difference between biological age and chronological age, is of growing interest, particularly with respect to age-related disorders, such as Alzheimer’s Disease (AD). Whilst studies have reported associations with AD risk and related phenotypes, there remains a lack of consensus on these associations. Here we aimed to comprehensively investigate the relationship between five recognised measures of age acceleration, based on DNA methylation patterns (DNAm age), and cross-sectional and longitudinal cognition and AD-related neuroimaging phenotypes (volumetric MRI and Amyloid-β PET) in the Australian Imaging, Biomarkers and Lifestyle (AIBL) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Significant associations were observed between age acceleration using the Hannum epigenetic clock and cross-sectional hippocampal volume in AIBL and replicated in ADNI. In AIBL, several other findings were observed cross-sectionally, including a significant association between hippocampal volume and the Hannum and Phenoage epigenetic clocks. Further, significant associations were also observed between hippocampal volume and the Zhang and Phenoage epigenetic clocks within Amyloid-β positive individuals. However, these were not validated within the ADNI cohort. No associations between age acceleration and other Alzheimer’s disease-related phenotypes, including measures of cognition or brain Amyloid-β burden, were observed, and there was no association with longitudinal change in any phenotype. This study presents a link between age acceleration, as determined using DNA methylation, and hippocampal volume that was statistically significant across two highly characterised cohorts. The results presented in this study contribute to a growing literature that supports the role of epigenetic modifications in ageing and AD-related phenotypes
- …