37 research outputs found

    A New WIMP Population in the Solar System and New Signals for Dark-Matter Detectors

    Full text link
    We describe in detail how perturbations due to the planets can cause a sub-population of WIMPs captured by scattering in surface layers of the Sun to evolve to have orbits which no longer intersect the Sun. We argue that such WIMPs, if their orbit has a semi-major axis less than 1/2 of Jupiter's, can persist in the solar system for cosmological timescales. This leads to a new, previously unanticipated WIMP population intersecting the Earth's orbit. The WIMP-nucleon cross sections required for this population to be significant are precisely those in the range predicted for SUSY dark matter, lying near the present limits obtained by direct underground dark matter searches using cyrogenic detectors. Thus, if a WIMP signal is observed in the next generation of detectors, a potentially measurable signal due to this new population must exist. This signal, lying in the keV range for Germanium detectors, would be complementary to that of galactic halo WIMPs. A comparison of event rates, anisotropies, and annual modulations would not only yield additional confirmation that any claimed signal is indeed WIMP-based, but would also allow one to gain information on the nature of the underlying dark matter model.Comment: Revtex, 37 pages including 6 figures, accepted by Phys. Rev D. (version to be published, including changes made in response to referees reports

    The Uncertainty in Newton's Constant and Precision Predictions of the Primordial Helium Abundance

    Full text link
    The current uncertainty in Newton's constant, G_N, is of the order of 0.15%. For values of the baryon to photon ratio consistent with both cosmic microwave background observations and the primordial deuterium abundance, this uncertainty in G_N corresponds to an uncertainty in the primordial 4He mass fraction, Y_P, of +-1.3 x 10^{-4}. This uncertainty in Y_P is comparable to the effect from the current uncertainty in the neutron lifetime, which is often treated as the dominant uncertainty in calculations of Y_P. Recent measurements of G_N seem to be converging within a smaller range; a reduction in the estimated error on G_N by a factor of 10 would essentially eliminate it as a source of uncertainty in the calculation of the primordial 4He abundance.Comment: 3 pages, no figures, fixed typos, to appear in Phys. Rev.

    Five Dimensional Cosmological Models in General Relativity

    Full text link
    A Five dimensional Kaluza-Klein space-time is considered in the presence of a perfect fluid source with variable G and Λ\Lambda. An expanding universe is found by using a relation between the metric potential and an equation of state. The gravitational constant is found to decrease with time as G∌t−(1−ω)G \sim t^{-(1-\omega)} whereas the variation for the cosmological constant follows as Λ∌t−2\Lambda \sim t^{-2}, Λ∌(R˙/R)2\Lambda \sim (\dot R/R)^2 and Λ∌Rš/R\Lambda \sim \ddot R/R where ω\omega is the equation of state parameter and RR is the scale factor.Comment: 13 pages, 4 figures, accepted in Int. J. Theor. Phy

    Gamma rays from dark matter annihilation in the Draco and observability at ARGO

    Full text link
    The CACTUS experiment recently observed a gamma ray excess above 50 GeV from the direction of the Draco dwarf spheroidal galaxy. Considering that Draco is dark matter dominated the gamma rays may be generated through dark matter annihilation in the Draco halo. In the framework of the minimal supersymmetric extension of the standard model we explore the parameter space to account for the gamma ray signals at CACTUS. We find that the neutralino mass is constrained to be approximately in the range between 100 GeV ~ 400 GeV and a sharp central cuspy of the dark halo profile in Draco is necessary to explain the CACTUS results. We then discuss further constraints on the supersymmetric parameter space by observations at the ground based ARGO detector. It is found that the parameter space can be strongly constrained by ARGO if no excess from Draco is observed above 100 GeV.Comment: 15 pages, 4 figure

    Large-scale magnetic fields from inflation in dilaton electromagnetism

    Full text link
    The generation of large-scale magnetic fields is studied in dilaton electromagnetism in inflationary cosmology, taking into account the dilaton's evolution throughout inflation and reheating until it is stabilized with possible entropy production. It is shown that large-scale magnetic fields with observationally interesting strength at the present time could be generated if the conformal invariance of the Maxwell theory is broken through the coupling between the dilaton and electromagnetic fields in such a way that the resultant quantum fluctuations in the magnetic field has a nearly scale-invariant spectrum. If this condition is met, the amplitude of the generated magnetic field could be sufficiently large even in the case huge amount of entropy is produced with the dilution factor ∌1024\sim 10^{24} as the dilaton decays.Comment: 28 pages, 5 figures, the version accepted for publication in Phys. Rev. D; some references are adde

    Age constraints and fine tuning in variable-mass particle models

    Full text link
    VAMP (variable-mass particles) scenarios, in which the mass of the cold dark matter particles is a function of the scalar field responsible for the present acceleration of the Universe, have been proposed as a solution to the cosmic coincidence problem, since in the attractor regime both dark energy and dark matter scale in the same way. We find that only a narrow region in parameter space leads to models with viable values for the Hubble constant and dark energy density today. In the allowed region, the dark energy density starts to dominate around the present epoch and consequently such models cannot solve the coincidence problem. We show that the age of the Universe in this scenario is considerably higher than the age for noncoupled dark energy models, and conclude that more precise independent measurements of the age of the Universe would be useful in distinguishing between coupled and noncoupled dark energy models.Comment: 7 pages, 8 figures, matches the Phys. Rev. D published versio

    Revisiting Generalized Chaplygin Gas as a Unified Dark Matter and Dark Energy Model

    Full text link
    In this paper, we revisit generalized Chaplygin gas (GCG) model as a unified dark matter and dark energy model. The energy density of GCG model is given as ρGCG/ρGCG0=[Bs+(1−Bs)a−3(1+α)]1/(1+α)\rho_{GCG}/\rho_{GCG0}=[B_{s}+(1-B_{s})a^{-3(1+\alpha)}]^{1/(1+\alpha)}, where α\alpha and BsB_s are two model parameters which will be constrained by type Ia supernova as standard candles, baryon acoustic oscillation as standard rulers and the seventh year full WMAP data points. In this paper, we will not separate GCG into dark matter and dark energy parts any more as adopted in the literatures. By using Markov Chain Monte Carlo method, we find the result: α=0.00126−0.00126−0.00126+0.000970+0.00268\alpha=0.00126_{- 0.00126- 0.00126}^{+ 0.000970+ 0.00268} and Bs=0.775−0.0161−0.0338+0.0161+0.0307B_s= 0.775_{- 0.0161- 0.0338}^{+ 0.0161+ 0.0307}.Comment: 6 pages, 4 figure

    Production and dilution of gravitinos by modulus decay

    Full text link
    We study the cosmological consequences of generic scalar fields like moduli which decay only through gravitationally suppressed interactions. We consider a new production mechanism of gravitinos from moduli decay, which might be more effective than previously known mechanisms, and calculate the final gravitino-to-entropy ratio to compare with the constraints imposed by successful big bang nucleosynthesis (BBN) etc., taking possible hadronic decays of gravitinos into account. We find the modulus mass smaller than ∌104\sim 10^4 TeV is excluded. On the other hand, inflation models with high reheating temperatures TR,inf∌1016T_{R,\rm inf} \sim 10^{16} GeV can be compatible with BBN thanks to the late-time entropy production from the moduli decay if model parameters are appropriately chosen.Comment: 18 pages, 4 figures, to appear in Phys. Rev.

    Diffuse inverse Compton and synchrotron emission from dark matter annihilations in galactic satellites

    Full text link
    Annihilating dark matter particles produce roughly as much power in electrons and positrons as in gamma ray photons. The charged particles lose essentially all of their energy to inverse Compton and synchrotron processes in the galactic environment. We discuss the diffuse signature of dark matter annihilations in satellites of the Milky Way (which may be optically dark with few or no stars), providing a tail of emission trailing the satellite in its orbit. Inverse Compton processes provide X-rays and gamma rays, and synchrotron emission at radio wavelengths might be seen. We discuss the possibility of detecting these signals with current and future observations, in particular EGRET and GLAST for the gamma rays.Comment: 13 pages, 5 figure

    Cosmic acceleration from second order gauge gravity

    Full text link
    We construct a phenomenological theory of gravitation based on a second order gauge formulation for the Lorentz group. The model presents a long-range modification for the gravitational field leading to a cosmological model provided with an accelerated expansion at recent times. We estimate the model parameters using observational data and verify that our estimative for the age of the Universe is of the same magnitude than the one predicted by the standard model. The transition from the decelerated expansion regime to the accelerated one occurs recently (at ∌9.3  Gyr\sim9.3\;Gyr).Comment: RevTex4 15 pages, 1 figure. Accepted for publication in Astrophysics & Space Scienc
    corecore