2 research outputs found
On the Particle Definition in the presence of Black Holes
A canonical particle definition via the diagonalisation of the Hamiltonian
for a quantum field theory in specific curved space-times is presented. Within
the provided approach radial ingoing or outgoing Minkowski particles do not
exist. An application of this formalism to the Rindler metric recovers the
well-known Unruh effect. For the situation of a black hole the Hamiltonian
splits up into two independent parts accounting for the interior and the
exterior domain, respectively. It turns out that a reasonable particle
definition may be accomplished for the outside region only. The Hamiltonian of
the field inside the black hole is unbounded from above and below and hence
possesses no ground state. The corresponding equation of motion displays a
linear global instability. Possible consequences of this instability are
discussed and its relations to the sonic analogues of black holes are
addressed. PACS-numbers: 04.70.Dy, 04.62.+v, 10.10.Ef, 03.65.Db.Comment: 44 pages, LaTeX, no figures, accepted for publication in Phys. Rev.