8 research outputs found
Weak Boson Production Amplitude Zeros; Equalities of the Helicity Amplitudes
We investigate the radiation amplitude zeros exhibited by many Standard Model
amplitudes for triple weak gauge boson production processes. We show that
production amplitudes have especially rich structure in terms of
zeros, these amplitudes have zeros originating from several different sources.
It is also shown that TYPE I current null zone is the special case of the
equality of the specific helicity amplitudes.Comment: 27 pages, 12 figures, 2 table
Casimir energy of a compact cylinder under the condition
The Casimir energy of an infinite compact cylinder placed in a uniform
unbounded medium is investigated under the continuity condition for the light
velocity when crossing the interface. As a characteristic parameter in the
problem the ratio is used, where and
are, respectively, the permittivity and permeability of the material
making up the cylinder and and are those for the
surrounding medium. It is shown that the expansion of the Casimir energy in
powers of this parameter begins with the term proportional to . The
explicit formulas permitting us to find numerically the Casimir energy for any
fixed value of are obtained. Unlike a compact ball with the same
properties of the materials, the Casimir forces in the problem under
consideration are attractive. The implication of the calculated Casimir energy
in the flux tube model of confinement is briefly discussed.Comment: REVTeX, 12 pages, 1 figure in a separate fig1.eps file, 1 table;
minor corrections in English and misprints; version to be published in Phys.
Rev. D1
Casimir interaction between two concentric cylinders: exact versus semiclassical results
The Casimir interaction between two perfectly conducting, infinite,
concentric cylinders is computed using a semiclassical approximation that takes
into account families of classical periodic orbits that reflect off both
cylinders. It is then compared with the exact result obtained by the
mode-by-mode summation technique. We analyze the validity of the semiclassical
approximation and show that it improves the results obtained through the
proximity theorem.Comment: 28 pages, 5 figures include
Calculating Casimir Energies in Renormalizable Quantum Field Theory
Quantum vacuum energy has been known to have observable consequences since
1948 when Casimir calculated the force of attraction between parallel uncharged
plates, a phenomenon confirmed experimentally with ever increasing precision.
Casimir himself suggested that a similar attractive self-stress existed for a
conducting spherical shell, but Boyer obtained a repulsive stress. Other
geometries and higher dimensions have been considered over the years. Local
effects, and divergences associated with surfaces and edges have been studied
by several authors. Quite recently, Graham et al. have re-examined such
calculations, using conventional techniques of perturbative quantum field
theory to remove divergences, and have suggested that previous self-stress
results may be suspect. Here we show that the examples considered in their work
are misleading; in particular, it is well-known that in two dimensions a
circular boundary has a divergence in the Casimir energy for massless fields,
while for general dimension not equal to an even integer the corresponding
Casimir energy arising from massless fields interior and exterior to a
hyperspherical shell is finite. It has also long been recognized that the
Casimir energy for massive fields is divergent for . These conclusions
are reinforced by a calculation of the relevant leading Feynman diagram in
and three dimensions. There is therefore no doubt of the validity of the
conventional finite Casimir calculations.Comment: 25 pages, REVTeX4, 1 ps figure. Revision includes new subsection 4B
and Appendix, and other minor correction
Local and Global Casimir Energies: Divergences, Renormalization, and the Coupling to Gravity
From the beginning of the subject, calculations of quantum vacuum energies or
Casimir energies have been plagued with two types of divergences: The total
energy, which may be thought of as some sort of regularization of the
zero-point energy, , seems manifestly divergent. And
local energy densities, obtained from the vacuum expectation value of the
energy-momentum tensor, , typically diverge near
boundaries. The energy of interaction between distinct rigid bodies of whatever
type is finite, corresponding to observable forces and torques between the
bodies, which can be unambiguously calculated. The self-energy of a body is
less well-defined, and suffers divergences which may or may not be removable.
Some examples where a unique total self-stress may be evaluated include the
perfectly conducting spherical shell first considered by Boyer, a perfectly
conducting cylindrical shell, and dilute dielectric balls and cylinders. In
these cases the finite part is unique, yet there are divergent contributions
which may be subsumed in some sort of renormalization of physical parameters.
The divergences that occur in the local energy-momentum tensor near surfaces
are distinct from the divergences in the total energy, which are often
associated with energy located exactly on the surfaces. However, the local
energy-momentum tensor couples to gravity, so what is the significance of
infinite quantities here? For the classic situation of parallel plates there
are indications that the divergences in the local energy density are consistent
with divergences in Einstein's equations; correspondingly, it has been shown
that divergences in the total Casimir energy serve to precisely renormalize the
masses of the plates, in accordance with the equivalence principle.Comment: 53 pages, 1 figure, invited review paper to Lecture Notes in Physics
volume in Casimir physics edited by Diego Dalvit, Peter Milonni, David
Roberts, and Felipe da Ros
Casimir torque between two inhomogeneous semi-transparent concentric cylinders
Motivated by the problem of Casimir energy, we investigate the idea of using
inhomogeneity of surfaces instead of their corrugation, which leads to Casimir interaction
between two inhomogeneous semi-transparent concentric cylinders. Using the multiple
scattering method, we study the Casimir energy and torque between the cylinders with
different potentials subjected to Dirichlet boundary conditions, both in weak and strong
coupling regimes. We also extend our formalism to the case of two inhomogeneous
dielectrics in a weak coupling regime