24 research outputs found

    Thermodynamic properties of thin films of superfluid 3He-A

    Full text link
    The pairing correlations in superfluid He-3 are strongly modified by quasiparticle scattering off a surface or an interface. We present theoretical results and predictions for the order parameter, the quasiparticle excitation spectrum and the free energy for thin films of superfluid He-3. Both specular and diffuse scattering by a substrate are considered, while the free surface is assumed to be a perfectly reflecting specular boundary. The results are based on self-consistent calculations of the order parameter and quasiparticle excitation spectrum at zero pressure. We obtain new results for the phase diagram, free energy, entropy and specific heat of thin films of superfluid He-3.Comment: Replaced with an updated versio

    Subharmonic gap structure in d-wave superconductors

    Full text link
    We present a self-consistent theory of current-voltage characteristics of d-wave/d-wave contacts at arbitrary transparency. In particular, we address the open problem of the observation of subharmonic gap structure (SGS) in cuprate junctions. Our analysis shows that: (i) the SGS is possible in d-wave superconductors, (ii) the existence of bound states within the gap results in an even-odd effect in the SGS, (iii) elastic scattering mechanisms, like impurities or surface roughness, may suppress the SGS, and (iv) in the presence of a magnetic field the Doppler shift of the Andreev bound states leads to a very peculiar splitting of the SGS, which is an unambiguous fingerprint of d-wave superconductivity.Comment: Revtex4, 4 pages, 5 figure

    Nuclear spin-lattice relaxation rate in the D+iD superconducting state: implications for CoO superconductor

    Full text link
    We calculated the nuclear spin-lattice relaxation rate 1/T11/T_1 for the D+iD superconducting state with impurities. We found that small amount of unitary impurities quickly produces the residual density of states inside the gap. As a result, the T-linear behavior in 1/T1_1 is observed at low temperatures. Our results show that the D+iD pairing symmetry of the superconducting state of Na0.35_{0.35}CoO2y_{2} \cdot yH2_2 O is compatible with recent 59^{59}Co 1/T1_1 experiments of several groups.Comment: 5 pages, 4 figures, minor change

    Thermodynamic Potential for Superfluid 3He in Aerogel

    Full text link
    We present a free energy functional for superfluid 3He in the presence of homogeneously distributed impurity disorder which extends the Ginzburg-Landau free energy functional to all temperatures. We use the new free energy functional to calculate the thermodynamic potential, entropy, heat capacity and density of states for the B-phase of superfluid 3He in homogeneous, isotropic aerogel.Comment: 10 pages, 4 figure

    Interface effects on the shot noise in normal metal- d-wave superconductor Junctions

    Full text link
    The current fluctuation in normal metal / d-wave superconductor junctions are studied for various orientation of the crystal by taking account of the spatial variation of the pair potentials. Not only the zero-energy Andreev bound states (ZES) but also the non-zero energy Andreev bound states influence on the properties of differential shot noise. At the tunneling limit, the noise power to current ratio at zero voltage becomes 0, once the ZES are formed at the interface. Under the presence of a subdominant s-wave component at the interface which breaks time-reversal symmetry, the ratio becomes 4eComment: 13 pages, 3 figure

    Quasiclassical description of transport through superconducting contacts

    Full text link
    We present a theoretical study of transport properties through superconducting contacts based on a new formulation of boundary conditions that mimics interfaces for the quasiclassical theory of superconductivity. These boundary conditions are based on a description of an interface in terms of a simple Hamiltonian. We show how this Hamiltonian description is incorporated into quasiclassical theory via a T-matrix equation by integrating out irrelevant energy scales right at the onset. The resulting boundary conditions reproduce results obtained by conventional quasiclassical boundary conditions, or by boundary conditions based on the scattering approach. This formalism is well suited for the analysis of magnetically active interfaces as well as for calculating time-dependent properties such as the current-voltage characteristics or as current fluctuations in junctions with arbitrary transmission and bias voltage. This approach is illustrated with the calculation of Josephson currents through a variety of superconducting junctions ranging from conventional to d-wave superconductors, and to the analysis of supercurrent through a ferromagnetic nanoparticle. The calculation of the current-voltage characteristics and of noise is applied to the case of a contact between two d-wave superconductors. In particular, we discuss the use of shot noise for the measurement of charge transferred in a multiple Andreev reflection in d-wave superconductors

    Non-Equilibrium Quasiclassical Theory for Josephson Structures

    Full text link
    We present a non-equilibrium quasiclassical formalism suitable for studying linear response ac properties of Josephson junctions. The non-equilibrium self-consistency equations are satisfied, to very good accuracy, already in zeroth iteration. We use the formalism to study ac Josephson effect in a ballistic superconducting point contact. The real and imaginary parts of the ac linear conductance are calculated both analytically (at low frequencies) and numerically (at arbitrary frequency). They show strong temperature, frequency, and phase dependence. Many anomalous properties appear near phi = pi. We ascribe them to the presence of zero energy bound states.Comment: 11 pages, 9 figures, Final version to appear in PR

    Localized surface states in HTSC: Alternative mechanism of zero-bias conductance peaks

    Full text link
    It is shown that the quasiparticle states localized in the vicinity of surface imperfections of atomic size can be responsible for the zero-bias tunneling conductance peaks in high-Tc superconductors. The contribution from these states can be easily separated from other mechanisms using their qualitatively different response on an external magnetic field.Comment: REVTeX, 4 pages, 2 figs; to be published in PR

    Response, relaxation and transport in unconventional superconductors

    Full text link
    We investigate the collision-limited electronic Raman response and the attenuation of ultrasound in spin-singlet d-wave superconductors at low temperatures. The dominating elastic collisions are treated within a t-matrix approximation, which combines the description of weak (Born) and strong (unitary) impurity scattering. In the long wavelength limit a two-fluid description of both response and transport emerges. Collisions are here seen to exclusively dominate the relaxational dynamics of the (Bogoliubov) quasiparticle system and the analysis allows for a clear connection of response and transport phenomena. When applied to quasi-2-d superconductors like the cuprates, it turns out that the transport parameter associated with the Raman scattering intensity for B1g and B2g photon polarization is closely related to the corresponding components of the shear viscosity tensor, which dominates the attenuation of ultrasound. At low temperatures we present analytic solutions of the transport equations, resulting in a non-power-law behavior of the transport parameters on temperature.Comment: 22 pages, 3 figure

    Josephson currents through spin-active interfaces

    Full text link
    The Josephson coupling of two isotropic s-wave superconductors through a small, magnetically active junction is studied. This is done as a function of junction transparency and of the degree of spin-mixing occurring in the barrier. In the tunneling limit, the critical current shows an anomalous 1/T temperature dependence at low temperatures and for certain magnetic realizations of the junction. The behavior of the Josephson current is governed by Andreev bound states appearing within the superconducting gap and the position of these states in energy is tunable with the magnetic properties of the barrier. This study is done using the equilibrium part of the quasiclassical Zaitsev-Millis-Rainer-Sauls boundary condition for spin-active interfaces and a general solution of the boundary condition is found. This solution is a generalization of the one recently presented by Eschrig [M. Eschrig, Phys. Rev B 61, 9061 (2000)] for spin-conserving interfaces and allows an effective treatment of the problem of a superconductor in proximity to a magnetically active material.Comment: 8 pages + 3 eps figure
    corecore