28 research outputs found
Charged Higgs Boson Production in Bottom-Gluon Fusion
We compute the complete next-to-leading order SUSY-QCD corrections for the
associated production of a charged Higgs boson with a top quark via
bottom-gluon fusion. We investigate the applicability of the bottom parton
description in detail. The higher order corrections can be split into real and
virtual corrections for a general two Higgs doublet model and into additional
massive supersymmetric loop contributions. We find that the perturbative
behavior is well under control. The supersymmetric contributions consist of the
universal bottom Yukawa coupling corrections and non-factorizable diagrams.
Over most of the relevant supersymmetric parameter space the Yukawa coupling
corrections are sizeable, while the remaining supersymmetric loop contributions
are negligible.Comment: 18 pages, v2: some discussions added, v3: published versio
Prospects for heavy supersymmetric charged Higgs boson searches at hadron colliders
We investigate the production of a heavy charged Higgs boson at hadron
colliders within the context of the MSSM. A detailed study is performed for all
important production modes and basic background processes for the
t\bar{t}b\bar{b} signature. In our analysis we include effects of initial and
final state showering, hadronization, and principal detector effects. For the
signal production rate we include the leading SUSY quantum effects at high
\tan\beta>~ mt/mb. Based on the obtained efficiencies for the signal and
background we estimate the discovery and exclusion mass limits of the charged
Higgs boson at high values of \tan\beta. At the upgraded Tevatron the discovery
of a heavy charged Higgs boson (MH^+ >~ 200 GeV) is impossible for the
tree-level cross-section values. However, if QCD and SUSY effects happen to
reinforce mutually, there are indeed regions of the MSSM parameter space which
could provide 3\sigma evidence and, at best, 5\sigma charged Higgs boson
discovery at the Tevatron for masses M_H^+<~ 300 GeV and M_H^+<~ 250 GeV,
respectively, even assuming squark and gluino masses in the (500-1000) GeV
range. On the other hand, at the LHC one can discover a H^+ as heavy as 1 TeV
at the canonical confidence level of 5\sigma; or else exclude its existence at
95% C.L. up to masses ~ 1.5 TeV. Again the presence of SUSY quantum effects can
be very important here as they may shift the LHC limits by a few hundred GeV.Comment: Latex2e, 44 pages, 15 figures, 6 tables, uses JHEP3.sty, axodraw.sty.
Comments added. Discussion on QCD factors clarified. Added discussion on
uncertainties. Change of presentation of Tables 4 and 5 and Fig.6. Results
and conclusions unchanged. Version accepted in JHE
Isospin dependence of electromagnetic transition strengths among an isobaric triplet
Electric quadrupole matrix elements, M, for the J=2→0, ΔT=0, T=1 transitions across the A=46 isobaric multiplet Cr-V-Ti have been measured at GSI with the FRS-LYCCA-AGATA setup. This allows direct insight into the isospin purity of the states of interest by testing the linearity of M with respect to T. Pairs of nuclei in the T=1 triplet were studied using identical reaction mechanisms in order to control systematic errors. The M values were obtained with two different methodologies: (i) a relativistic Coulomb excitation experiment was performed for Cr and Ti; (ii) a “stretched target” technique was adopted here, for the first time, for lifetime measurements in V and Ti. A constant value of M across the triplet has been observed. Shell-model calculations performed within the fp shell fail to reproduce this unexpected trend, pointing towards the need of a wider valence space. This result is confirmed by the good agreement with experimental data achieved with an interaction which allows excitations from the underlying sd shell. A test of the linearity rule for all published data on complete T=1 isospin triplets is presented.Peer Reviewe
Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015
Background: The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context.
Methods: We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI).
Findings: Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa.
Interpretation: Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden.
Funding: Bill & Melinda Gates Foundation
Low-lying electric dipole γ-continuum for the unstable 62,64Fe nuclei: Strength evolution with neutron number
6 pags., 4 figs.The γ-ray emission from the nuclei Fe following Coulomb excitation at bombarding energy of 400-440 AMeV was measured with special focus on E1 transitions in the energy region 4-8 MeV. The unstable neutron-rich nuclei Fe were produced at the FAIR-GSI laboratories and selected with the FRS spectrometer. The γ decay was detected with AGATA. From the measured γ-ray spectra the summed E1 strength is extracted and compared to microscopic quasi-particle phonon model calculations. The trend of the E1 strength with increasing neutron number is found to be fairly well reproduced with calculations that assume a rather complex structure of the 1 states (three-phonon states) inducing a strong fragmentation of the E1 nuclear response below the neutron binding energy.This work was partially supported by INFN (Italy) and STFC (UK), the Swedish Research Council (Vetenskapsrådet, VR 2010-147, 2011-5253, and 2016-3969), BMBF NuSTAR-AGATA 05P18RDFN9 and BMBF NuSTAR 05P18RDFN1. The project was co-funded by the European Commission under the 7th Framework Program for RTD (2007-2013) under the Capacities Program (Contract Number 262010, ENSAR). This work was par-tially supported by the Ministry of Science, and Generalitat Valenciana, Spain, under the Grants SEV-2014-0398, FPA2017-84756-C4, PROMETEO/2019/005 and by the EU FEDER funds
Reinterpretation of excited states in Po: Shell-model multiplets rather than -cluster states
International audienceA -ray spectroscopic study of Po was performed at the Grand Accélérateur National d’Ions Lourds, using the inverse kinematics α-transfer reaction C(Pb, Po) Be and the AGATA spectrometer. A careful analysis based on coincidence relations allowed us to establish 14 new excited states in the energy range between 1.9 and 3.3 MeV. None of these states, however, can be considered as candidates for the levels with spins and parities of and and excitation energies below 2.1 MeV, which have been predicted by recent αcluster model calculations. A systematic comparison of the experimentally established excitation scheme of Po with shell-model calculations was performed. This comparison suggests that the six states with excitation energies (spins and parities) of 1744 (4), 1751 (8), 1787 (6), 1946 (4), 1986 (8), and 2016 (6) keV, which previously were interpreted as α-cluster states, may in fact be of positive parity and belong to low-lying shell-model multiplets. This reinterpretation of the structure of Po is supported by experimental information with respect to the linear polarization of rays, which suggests a magnetic character of the 432-keV ray decaying from the state at an excitation energy of 1787 keV to the yrast state, and exclusive reaction cross sections
Low-lying electric dipole gamma-continuum for the unstable Fe-62,64 nuclei : Strength evolution with neutron number
The gamma-ray emission from the nuclei Fe-62,Fe-64 following Coulomb excitation at bombarding energy of 400-440 AMeV was measured with special focus on E1 transitions in the energy region 4-8 MeV. The unstable neutron-rich nuclei Fe-62,Fe-64 were produced at the FAIR-GSI laboratories and selected with the FRS spectrometer. The gamma decay was detected with AGATA. From the measured gamma-ray spectra the summed E1 strength is extracted and compared to microscopic quasi-particle phonon model calculations. The trend of the E1 strength with increasing neutron number is found to be fairly well reproduced with calculations that assume a rather complex structure of the 1(-) states (three-phonon states) inducing a strong fragmentation of the E1 nuclear response below the neutron binding energy
Isospin dependence of electromagnetic transition strengths among an isobaric triplet
Electric quadrupole matrix elements, Mp, for the Jπ=2+→0+, ΔT=0, T=1 transitions across the A=46 isobaric multiplet 46Cr-46V-46Ti have been measured at GSI with the FRS-LYCCA-AGATA setup. This allows direct insight into the isospin purity of the states of interest by testing the linearity of Mp with respect to Tz. Pairs of nuclei in the T=1 triplet were studied using identical reaction mechanisms in order to control systematic errors. The Mp values were obtained with two different methodologies: (i) a relativistic Coulomb excitation experiment was performed for 46Cr and 46Ti; (ii) a “stretched target” technique was adopted here, for the first time, for lifetime measurements in 46V and 46Ti. A constant value of Mp across the triplet has been observed. Shell-model calculations performed within the fp shell fail to reproduce this unexpected trend, pointing towards the need of a wider valence space. This result is confirmed by the good agreement with experimental data achieved with an interaction which allows excitations from the underlying sd shell. A test of the linearity rule for all published data on complete T=1 isospin triplets is presented.peerReviewe