20 research outputs found
The use of cavities for gettering in silicon microelectronic devices
This paper presents results from an ongoing three-year project in which the use of microcavities to getter transition metal impurities in silicon-based microelectronic devices has been investigated. The paper reports on the results of a fundamental study of bubble growth mechanisms and on a systematic study of possible detrimental effects of cavity gettering on 1.2 μm p-type metal–oxide-semiconductor field effect transistors
Unstable, self-limiting thermochemical temperature oscillations in Macrozamia cycads
Field measurements and laboratory experiments on the Australian cycads Macrozamia lucida and Macrozamia macleayi demonstrate that their cones' diel peak thermogenic temperature increase varies systematically with cone stage, with single thermogenic temperature peaks occurring daily for up to 2 weeks and reaching 12°C above ambient at midstage. The initiation, magnitude and timing of those peaks are strongly modulated by ambient temperature; the period between successive thermogenic temperature peaks is not circadian, and light is neither necessary nor sufficient to initiate a thermogenic event. A mathematical analysis is developed that provides a unified explanation of the experimental results. It describes these unstable, self-limiting thermogenic events in terms of conservation of energy and a first-order chemical reaction rate model that includes an Arrhenius equation dependence of the cone's metabolic heating rate on the cone temperature
In situ imaging of mitochondrial outer-membrane pores using atomic force microscopy
Here we describe a technique for imaging of the outer contours of the mitochondrial membrane using atomic force microscopy, subsequent to or during a toxic or metabolic challenge. Pore formation in both glucose-challenged and 1,3-dinitrobenzene (DNB)-challenged mitochondria was observed using this technique. Our approach enables quantification of individual mitochondrial membrane pore formations. With this work, we have produced some of the highest resolution images of the outer contours of the in situ mitochondrial membrane published to date. These are potentially the first images of the component protein clusters at the time of formation of the mitochondrial membrane transition pore in situ. With the current work, we have extended the application of atomic force microscopy of mitochondrial membranes to fluid imaging. We have also begun to correlate 3-D surface features of mitochondria dotted with open membrane pores with features previously viewed with electron microscopy (EM) of fixed sections