16 research outputs found

    Filter Cleaning Using Gas Injection

    Get PDF
    A filter cleaning process using gas injection is considered. An estimate for the minimum mass flow rate out of the gas injector and the corresponding injector/filter geometry is found. The estimates are based on a similarity solution for a free turbulent jet. The minimum mass flow rate and geometry is worked out for a specific example

    Deterministic mathematical modelling for cancer chronotherapeutics: cell population dynamics and treatment optimisation

    Get PDF
    Chronotherapeutics has been designed and used for more than twenty years as an effective treatment against cancer by a few teams around the world, among whom one of the first is Francis LĂ©vi's at Paul-Brousse hospital (Villejuif, France), in application of circadian clock physiology to determine best infusion times within the 24-hour span for anticancer drug delivery. Mathematical models have been called in the last ten years to give a rational basis to such optimised treatments, for use in the laboratory and ultimately in the clinic. While actual clinical applications of the theoretical optimisation principles found have remained elusive so far to improve chronotherapeutic treatments in use, mathematical models provide proofs of concepts and tracks to be explored experimentally, to progress from theory to bedside. Starting from a simple ordinary differential equation model that allowed setting and numerically solving a drug delivery optimisation problem with toxicity constraints, this modelling enterprise has been extended to represent the division cycle in proliferating cell populations with different molecular targets, to allow for the representation of anticancer drug combinations that are used in clinical oncology. The main point to be made precise in such a therapeutic optimisation problem is to establish, here in the frame of circadian chronobiology, physiologically based differences between healthy and cancer cell populations in their responses to drugs. To this aim, clear biological evidence at the molecular level is still lacking, so that, starting from indirect observations at the experimental and clinical levels and from theoretical considerations on the model, speculations have been made, that will be exposed in this review of cancer chronotherapeutics models with the corresponding optimisation problems and their numerical solutions, to represent these differences between the two cell populations, with regard to circadian clock control

    Mercato del lavoro, mobilitĂ  e integrazione in area transfrontaliera: Arogno e il Comasco tra Otto e Novecento

    Get PDF
    T cells are key players in the immune action against the invasion of cancer cells. During an immune response, antigen-specific T cells dynamically sculpt the antigenic distribution of cancer cells, and cancer cells concurrently shape the repertoire of antigen-specific T cells. The succession of these reciprocal selective sweeps can result in “chase-and-escape” dynamics, and lead to immune evasion. It has been proposed that immune evasion can be countered by immunotherapy strategies aimed at regulating the immune response. In this work, we present a mathematical model of the competition between cancer cells and T cells under immunotherapy. We show that effective immunotherapy protocols can be designed by using therapeutic agents that boost T-cell proliferation in combination with boosters of immune memory
    corecore