7 research outputs found
Optimizing real time fMRI neurofeedback for therapeutic discovery and development
While reducing the burden of brain disorders remains a top priority of organizations like the World Health Organization and National Institutes of Health, the development of novel, safe and effective treatments for brain disorders has been slow. In this paper, we describe the state of the science for an emerging technology, real time functional magnetic resonance imaging (rtfMRI) neurofeedback, in clinical neurotherapeutics. We review the scientific potential of rtfMRI and outline research strategies to optimize the development and application of rtfMRI neurofeedback as a next generation therapeutic tool. We propose that rtfMRI can be used to address a broad range of clinical problems by improving our understanding of brain–behavior relationships in order to develop more specific and effective interventions for individuals with brain disorders. We focus on the use of rtfMRI neurofeedback as a clinical neurotherapeutic tool to drive plasticity in brain function, cognition, and behavior. Our overall goal is for rtfMRI to advance personalized assessment and intervention approaches to enhance resilience and reduce morbidity by correcting maladaptive patterns of brain function in those with brain disorders
Core neuropsychological measures for obesity and diabetes trials: Initial report.
Obesity and diabetes are known to be related to cognitive abilities. The Core Neuropsychological Measures for Obesity and Diabetes Trials Project aimed to identify the key cognitive and perceptual domains in which performance can influence treatment outcomes, including predicting, mediating, and moderating treatment outcome and to generate neuropsychological batteries comprised of well-validated, easy-to-administer tests that best measure these key domains. The ultimate goal is to facilitate inclusion of neuropsychological measures in clinical studies and trials so that we can gather more information on potential mediators of obesity and diabetes treatment outcomes. We will present the rationale for the project and three options for the neuropsychological batteries to satisfy varying time and other administration constraints. Future directions are discussed. Preprint version of the document is available at https://osf.io/preprints/nutrixiv/7jygx/