7 research outputs found

    The physics of line-driven winds of hot massive stars

    Get PDF
    De zwaarste sterren in de Melkweg en de ons omringende sterrenstelsels zijn 100 tot 150 keer zwaarder dan de zon. Zware sterren hebben gedurende de gehele geschiedenis van het universum een belangrijke rol gespeeld in de vorming en evolutie van sterrenstelsels. Theoretische voorspellingen laten zelfs zien dat de allereerste sterren die zich ooit vormden - enige honderden miljoenen jaren na de oerknal - waarschijnlijk zeer zwaar geweest zijn. Een proces dat in belangrijke mate de levensloop van zware sterren bepaald is sterrenwind, het continue verlies van gas in een min of meer sferische uitstroom. Lianne Muijres onderzocht een aantal aspecten van het mechanisme dat leidt tot deze sterrenwind. Ook kwantificeerde ze hoe het massaverlies afhangt van stereigenschappen. Het lijkt zo te zijn dat de eerste sterren gedurende hun leven van binnenuit hun oppervlak verrijkten met in de kern geproduceerde complexere elementen, zoals koolstof, stikstof en zuurstof. Maar waren deze sterren in staat een sterrenwind te produceren? Muijres laat zien dat sterren die zelf-verrijkt zijn in koolstof, stikstof en zuurstof wel degelijk een sterrenwind kunnen hebben, zij het een wind die veel zwakker is dan verwacht op basis van een solair mengsel van chemische elementen dat optelt tot eenzelfde metaalfractie. Zeer hete sterren in het vroege heelal zouden wel eens helemaal geen sterrenwind gehad kunnen hebben. Dit laatste is interessant omdat extreem snel draaiende zware sterren wel eens heel hun leven zeer heet kunnen zijn. Snel rondtollende zware sterren in het vroege heelal ondergaan mogelijk een zeer speciaal type supernova, een gamma-ray-burst. De kans dat dit gebeurt wordt groter als de ster gedurende haar leven een laag massaverlies heeft

    Predictions of the effect of clumping on the wind properties of O-type stars

    Get PDF
    Aims. Both empirical evidence and theoretical findings indicate that the stellar winds of massive early-type stars are inhomogeneous, i.e., porous and clumpy. For relatively dense winds, empirically derived mass-loss rates might be reconciled with predictions if these empirical rates are corrected for clumping. The predictions, however, do not account for structure in the wind. To allow for a consistent comparison, we investigate and quantify the effect of clumpiness and porosity of the outflow on the predicted wind energy and the maximal effect on the mass-loss rate of O-type stars. Methods. Combining non-LTE model atmospheres and aMonte Carlo method to compute the transfer of momentum from the photons to the gas, the effect of clumping and porosity on the energy transferred from the radiation field to the wind is computed in outflows in which the clumping and porosity stratification is parameterized by heuristic prescriptions. Results. The impact of structure in the outflow on the wind energy is complex and is a function of stellar temperature, the density of gas in the clumps, and the physical scale of the clumps. If the medium is already clumped in the photosphere, the emergent radiation field will be softer, slightly increasing the wind energy of relatively cool O stars (30 000 K) but slightly decreasing it for relatively hot O stars (40 000K). More important is that as a result of recombination of the gas in a clumped wind the line force increases. However, because of porosity the line force decreases, simply because photons may travel in-between the clumps, avoiding interactions with the gas. If the changes in the wind energy only affect the mass-loss rate and not the terminal velocity of the flow, we find that the combined effect of clumpiness and porosity is a small reduction in the mass-loss rate if the clumps are smaller than 1/100th the local density scale height Hρ. In this case, empirical mass-loss determinations based on Hα fitting and theory match for stars with dense winds ( ˙M >∌ 10−7 M yr−1) if the overdensity of gas in the clumps, relative to the case of a smooth wind, is modest. For clumps larger than 1/10th Hρ, the predicted mass-loss rates exhibit almost the same dependence on clumpiness as do empirical rates. We show that this implies that empirical and predicted mass-loss rates can no longer be matched. Very high overdensities of gas in clumps of such large size may cause the predicted ˙M to decrease by a factor of from 10 to 100. This type of structure is likely not to be the cause of the “weak-wind problem” in early-type stars, unless a mechanism can be identified that causes extreme structure to develop in winds for which ˙

    The feedback of massive stars on interstellar astrochemical processes

    Full text link
    Astrochemistry is a discipline that studies physico-chemical processes in astrophysical environments. Such environments are characterized by conditions that are substantially different from those existing in usual chemical laboratories. Models which aim to explain the formation of molecular species in interstellar environments must take into account various factors, including many that are directly, or indirectly related to the populations of massive stars in galaxies. The aim of this paper is to review the influence of massive stars, whatever their evolution stage, on the physico-chemical processes at work in interstellar environments. These influences include the ultraviolet radiation field, the production of high energy particles, the synthesis of radionuclides and the formation of shocks that permeate the interstellar medium

    Towards a Unified View of Inhomogeneous Stellar Winds in Isolated Supergiant Stars and Supergiant High Mass X-Ray Binaries

    No full text
    corecore