4 research outputs found

    Declarative specification of indentation rules: A tooling perspective on parsing and pretty-printing layout-sensitive languages

    No full text
    In layout-sensitive languages, the indentation of an expression or statement can influence how a program is parsed. While some of these languages (e.g., Haskell and Python) have been widely adopted, there is little support for software language engineers in building tools for layout-sensitive languages. As a result, parsers, pretty-printers, program anal-yses, and refactoring tools often need to be handwritten, which decreases the maintainability and extensibility of these tools. Even state-of-the-art language workbenches have little support for layout-sensitive languages, restricting the development and prototyping of such languages. In this paper, we introduce a novel approach to declarative specification of layout-sensitive languages using layout declarations. Layout declarations are high-level specifications of indentation rules that abstract from low-level technicalities. We show how to derive an efficient layout-sensitive generalized parser and a corresponding pretty-printer automatically from a language specification with layout declarations. We validate our approach in a case-study using a syntax definition for the Haskell programming language, investigating the performance of the generated parser and the correctness of the generated pretty-printer against 22191 Haskell files.</p

    Publisher Correction: Stroke genetics informs drug discovery and risk prediction across ancestries.

    No full text

    Cellular Signaling Mechanisms for Muscarinic Acetylcholine Receptors

    No full text
    corecore