4 research outputs found
Spectral functions, Fermi surface and pseudogap in the t-J model
Spectral functions within the generalized t-J model as relevant to cuprates
are analyzed using the method of equations of motion for projected fermion
operators. In the evaluation of the self energy the decoupling of spin and
single-particle fluctuations is performed. It is shown that in an undoped
antiferromagnet (AFM) the method reproduces the selfconsistent Born
approximation. For finite doping with short range AFM order the approximation
evolves into a paramagnon contribution which retains large incoherent
contribution in the hole part of the spectral function as well as the
hole-pocket-like Fermi surface at low doping. On the other hand, the
contribution of (longitudinal) spin fluctuations, with the coupling mostly
determined predominantly by J and next-neighbor hopping t', is essential for
the emergence of the pseudogap. The latter shows at low doping in the effective
truncation of the large Fermi surface, reduced electron density of states and
at the same time quasiparticle density of states at the Fermi level.Comment: RevTex, 13 pages, 11 figures (5 color