23 research outputs found

    Computation using Noise-based Logic: Efficient String Verification over a Slow Communication Channel

    Full text link
    Utilizing the hyperspace of noise-based logic, we show two string verification methods with low communication complexity. One of them is based on continuum noise-based logic. The other one utilizes noise-based logic with random telegraph signals where a mathematical analysis of the error probability is also given. The last operation can also be interpreted as computing universal hash functions with noise-based logic and using them for string comparison. To find out with 10^-25 error probability that two strings with arbitrary length are different (this value is similar to the error probability of an idealistic gate in today's computer) Alice and Bob need to compare only 83 bits of the noise-based hyperspace.Comment: Accepted for publication in European Journal of Physics B (November 10, 2010

    Long Response to Scheuer-Yariv: "A Classical Key-Distribution System based on Johnson (like) noise - How Secure?", physics/0601022

    Full text link
    This is the longer (partially unpublished) version of response; the shorter version (http://arxiv.org/abs/physics/0605013) is published in Physics Letters A. We point out that the claims in the comment-paper of Scheuer and Yariv are either irrelevant or incorrect. We first clarify what the security of a physically secure layer means. The idealized Kirchoff-loop-Johnson-like-noise (KLJN) scheme is totally secure therefore it is more secure than idealized quantum communication schemes which can never be totally secure because of the inherent noise processes in those communication schemes and the statistical nature of eavesdropper detection based on error statistics. On the other hand, with sufficient resources, a practical/non-ideal realization of the KLJN cipher can arbitrarily approach the idealized limit and outperform even the idealized quantum communicator schemes because the non-ideality-effects are determined and controlled by the design. The cable resistance issue analyzed by Scheuer and Yariv is a good example for that because the eavesdropper has insufficient time window to build a sufficient statistics and the actual information leak can be designed. We show that Scheuer's and Yariv's numerical result of 1% voltage drop supports higher security than that of quantum communicators. Moreover, choosing thicker or shorter wires can arbitrarily reduce this voltage drop further; the same conclusion holds even according to the equations of Scheuer and Yariv.Comment: The older long response and the newer brief response (in press, PLA) with modelling data are fuse

    Information theoretic security by the laws of classical physics

    Full text link
    It has been shown recently that the use of two pairs of resistors with enhanced Johnson-noise and a Kirchhoff-loop-i.e., a Kirchhoff-Law-Johnson-Noise (KLJN) protocol-for secure key distribution leads to information theoretic security levels superior to those of a quantum key distribution, including a natural immunity against a man-in-the-middle attack. This issue is becoming particularly timely because of the recent full cracks of practical quantum communicators, as shown in numerous peer-reviewed publications. This presentation first briefly surveys the KLJN system and then discusses related, essential questions such as: what are perfect and imperfect security characteristics of key distribution, and how can these two types of securities be unconditional (or information theoretical)? Finally the presentation contains a live demonstration.Comment: Featured in MIT Technology Review http://www.technologyreview.com/view/428202/quantum-cryptography-outperformed-by-classical/ ; Plenary talk at the 5th IEEE Workshop on Soft Computing Applications, August 22-24, 2012, (SOFA 2012). Typos correcte

    Digital Logic Using Non-DC Signals

    No full text

    Bit errors in the Kirchhoff-Law–Johnson-Noise secure key exchange

    No full text

    Future Directions in Electronic Computing and Information Processing

    No full text

    Fluctuation-enhanced multiple-gas sensing by commercial Taguchi sensors

    No full text

    1/f Noise in WO3 nanoparticle films as a diagnostic tool

    No full text
    corecore