25 research outputs found

    Semiclassical strings in Sasaki-Einstein manifolds and long operators in N=1 gauge theories

    Full text link
    We study the AdS/CFT relation between an infinite class of 5-d Ypq Sasaki-Einstein metrics and the corresponding quiver theories. The long BPS operators of the field theories are matched to massless geodesics in the geometries, providing a test of AdS/CFT for these cases. Certain small fluctuations (in the BMN sense) can also be successfully compared. We then go further and find, using an appropriate limit, a reduced action, first order in time derivatives, which describes strings with large R-charge. In the field theory we consider holomorphic operators with large winding numbers around the quiver and find, interestingly, that, after certain simplifying assumptions, they can be described effectively as strings moving in a particular metric. Although not equal, the metric is similar to the one in the bulk. We find it encouraging that a string picture emerges directly from the field theory and discuss possible ways to improve the agreement.Comment: 44 pages, LaTeX, 9 figures. v2: References adde

    Semiparametric theory and empirical processes in causal inference

    Full text link
    In this paper we review important aspects of semiparametric theory and empirical processes that arise in causal inference problems. We begin with a brief introduction to the general problem of causal inference, and go on to discuss estimation and inference for causal effects under semiparametric models, which allow parts of the data-generating process to be unrestricted if they are not of particular interest (i.e., nuisance functions). These models are very useful in causal problems because the outcome process is often complex and difficult to model, and there may only be information available about the treatment process (at best). Semiparametric theory gives a framework for benchmarking efficiency and constructing estimators in such settings. In the second part of the paper we discuss empirical process theory, which provides powerful tools for understanding the asymptotic behavior of semiparametric estimators that depend on flexible nonparametric estimators of nuisance functions. These tools are crucial for incorporating machine learning and other modern methods into causal inference analyses. We conclude by examining related extensions and future directions for work in semiparametric causal inference

    Classical/quantum integrability in AdS/CFT

    Full text link
    We discuss the AdS/CFT duality from the perspective of integrable systems and establish a direct relationship between the dimension of single trace local operators composed of two types of scalar fields in N=4 super Yang-Mills and the energy of their dual semiclassical string states in AdS(5) X S(5). The anomalous dimensions can be computed using a set of Bethe equations, which for ``long'' operators reduces to a Riemann-Hilbert problem. We develop a unified approach to the long wavelength Bethe equations, the classical ferromagnet and the classical string solutions in the SU(2) sector and present a general solution, governed by complex curves endowed with meromorphic differentials with integer periods. Using this solution we compute the anomalous dimensions of these long operators up to two loops and demonstrate that they agree with string-theory predictions.Comment: 49 pages, 5 figures, LaTeX; v2: complete proof of the two-loop equivalence between the sigma model and the gauge theory is added. References added; v4,v5,v6: misprints correcte
    corecore