37 research outputs found

    Religious diversity, empathy, and God images : perspectives from the psychology of religion shaping a study among adolescents in the UK

    Get PDF
    Major religious traditions agree in advocating and promoting love of neighbour as well as love of God. Love of neighbour is reflected in altruistic behaviour and empathy stands as a key motivational factor underpinning altruism. This study employs the empathy scale from the Junior Eysenck Impulsiveness Questionnaire to assess the association between empathy and God images among a sample of 5993 religiously diverse adolescents (13–15 years old) attending state maintained schools in England, Northern Ireland, Scotland, Wales, and London. The key psychological theory being tested by these data concerns the linkage between God images and individual differences in empathy. The data demonstrate that religious identity (e.g. Christian, Muslim) and religious attendance are less important than the God images which young people hold. The image of God as a God of mercy is associated with higher empathy scores, while the image of God as a God of justice is associated with lower empathy scores

    The arctic curve of the domain-wall six-vertex model

    Full text link
    The problem of the form of the `arctic' curve of the six-vertex model with domain wall boundary conditions in its disordered regime is addressed. It is well-known that in the scaling limit the model exhibits phase-separation, with regions of order and disorder sharply separated by a smooth curve, called the arctic curve. To find this curve, we study a multiple integral representation for the emptiness formation probability, a correlation function devised to detect spatial transition from order to disorder. We conjecture that the arctic curve, for arbitrary choice of the vertex weights, can be characterized by the condition of condensation of almost all roots of the corresponding saddle-point equations at the same, known, value. In explicit calculations we restrict to the disordered regime for which we have been able to compute the scaling limit of certain generating function entering the saddle-point equations. The arctic curve is obtained in parametric form and appears to be a non-algebraic curve in general; it turns into an algebraic one in the so-called root-of-unity cases. The arctic curve is also discussed in application to the limit shape of qq-enumerated (with 0<q40<q\leq 4) large alternating sign matrices. In particular, as q0q\to 0 the limit shape tends to a nontrivial limiting curve, given by a relatively simple equation.Comment: 39 pages, 2 figures; minor correction

    Dilepton production in heavy ion collisions at intermediate energies

    Full text link
    We present a unified description of the vector meson and dilepton production in elementary and in heavy ion reactions. The production of vector mesons (ρ,ω\rho,\omega) is described via the excitation of nuclear resonances (RR). The theoretical framework is an extended vector meson dominance model (eVMD). The treatment of the resonance decays RNVR\longmapsto NV with arbitrary spin is covariant and kinematically complete. The eVMD includes thereby excited vector meson states in the transition form factors. This ensures correct asymptotics and provides a unified description of photonic and mesonic decays. The resonance model is successfully applied to the ω\omega production in p+pp+p reactions. The same model is applied to the dilepton production in elementary reactions (p+p,p+dp+p, p+d). Corresponding data are well reproduced. However, when the model is applied to heavy ion reactions in the BEVALAC/SIS energy range the experimental dilepton spectra measured by the DLS Collaboration are significantly underestimated at small invariant masses. As a possible solution of this problem the destruction of quantum interference in a dense medium is discussed. A decoherent emission through vector mesons decays enhances the corresponding dilepton yield in heavy ion reactions. In the vicinity of the ρ/ω\rho/\omega-peak the reproduction of the data requires further a substantial collisional broadening of the ρ\rho and in particular of the ω\omega meson.Comment: 32 pages revtex, 19 figures, to appear in PR

    Strategies for Controlled Placement of Nanoscale Building Blocks

    Get PDF
    The capability of placing individual nanoscale building blocks on exact substrate locations in a controlled manner is one of the key requirements to realize future electronic, optical, and magnetic devices and sensors that are composed of such blocks. This article reviews some important advances in the strategies for controlled placement of nanoscale building blocks. In particular, we will overview template assisted placement that utilizes physical, molecular, or electrostatic templates, DNA-programmed assembly, placement using dielectrophoresis, approaches for non-close-packed assembly of spherical particles, and recent development of focused placement schemes including electrostatic funneling, focused placement via molecular gradient patterns, electrodynamic focusing of charged aerosols, and others
    corecore