2 research outputs found

    Scalar conservation laws with nonconstant coefficients with application to particle size segregation in granular flow

    Full text link
    Granular materials will segregate by particle size when subjected to shear, as occurs, for example, in avalanches. The evolution of a bidisperse mixture of particles can be modeled by a nonlinear first order partial differential equation, provided the shear (or velocity) is a known function of position. While avalanche-driven shear is approximately uniform in depth, boundary-driven shear typically creates a shear band with a nonlinear velocity profile. In this paper, we measure a velocity profile from experimental data and solve initial value problems that mimic the segregation observed in the experiment, thereby verifying the value of the continuum model. To simplify the analysis, we consider only one-dimensional configurations, in which a layer of small particles is placed above a layer of large particles within an annular shear cell and is sheared for arbitrarily long times. We fit the measured velocity profile to both an exponential function of depth and a piecewise linear function which separates the shear band from the rest of the material. Each solution of the initial value problem is non-standard, involving curved characteristics in the exponential case, and a material interface with a jump in characteristic speed in the piecewise linear case

    The influence of localised size reorganisation on short-duration bidispersed granular flows

    Get PDF
    We investigate experimentally the runout resulting from the collapse of a granular column containing two particle species that differ in size only. The experimental configuration is strictly twodimensional (only one particle per width of the experimental tank) and we explore both the role of the initial arrangement and proportion of the two particle sizes in the column, using high-speed videography, and by determining the centres of mass of the big and small particles in the initial column and the final deposit. The duration of the experiment is sufficiently short that large-scale segregation does not occur, however, we find a clear dependence of runout on both initial mixture arrangement and proportion for all conditions. We investigated this observation through detailed analysis of the flow front motion, and identify a characteristic "stopping" phase when dissipation dominates, and we apply a shallow layer model at the flow front to show how the initial mixture arrangement and proportion influence the effective coefficient of friction during emplacement. We find that a bidispersed mixture can induce a larger friction on emplacement than a monodispersed mixture, and the highest coefficient of friction was found for a well-mixed initial arrangement of particles at the proportion that shows maximum horizontal spreading of the flow. These observations suggest that downwards percolation of fine particles takes place at the front of the collapsing column, and so localised size segregation processes at the flow front can control flow mobility. This effect is likely to be important in controlling the mobility of large geophysical flows that occur on finite time scales, and whose deposits typically show granular segregation at the front and edges but not throughout the entire deposit
    corecore