5 research outputs found

    Excitatory effect of ATP on rat area postrema neurons

    Get PDF
    ATP-induced inward currents and increases in the cytosolic Ca2+ concentration ([Ca]in) were investigated in neurons acutely dissociated from rat area postrema using whole-cell patch-clamp recordings and fura-2 microfluorometry, respectively. The ATP-induced current (IATP) and [Ca]in increases were mimicked by 2-methylthio-ATP and ATP-γS, and were inhibited by P2X receptor (P2XR) antagonists. The current–voltage relationship of the IATP exhibited a strong inward rectification, and the amplitude of the IATP was concentration-dependent. The IATP was markedly reduced in the absence of external Na+, and the addition of Ca2+ to Na+-free saline increased the IATP. ATP did not increase [Ca]in in the absence of external Ca2+, and Ca2+ channel antagonists partially inhibited the ATP-induced [Ca]in increase, indicating that ATP increases [Ca]in by Ca2+ influx through both P2XR channels and voltage-dependent Ca2+ channels. There was a negative interaction between P2XR- and nicotinic ACh receptor (nAChR)-channels, which depended on the amplitude and direction of current flow through either channel. Current occlusion was observed at Vhs between −70 and −10 mV when the IATP and ACh-induced current (IACh) were inward, but no occlusion was observed when these currents were outward at a Vh of +40 mV. The IATP was not inhibited by co-application of ACh when the IACh was markedly decreased either by removal of permeant cations, by setting Vh close to the equilibrium potential of IACh, or by the addition of d-tubocurarine or serotonin. These results suggest that the inhibitory interaction is attributable to inward current flow of cations through the activated P2XR- and nAChR-channels

    ATP-induced Ca2+ response mediated by P2U and P2Y purinoceptors in human macrophages: signalling from dying cells to macrophages

    No full text
    The activation of macrophages by various stimuli leading to chemotactic migration and phagocytosis is known to be mediated by an increase in intracellular Ca2+ concentration ([Ca2+]i). We measured changes in [Ca2+]i using a Ca2+ imaging method in individual human macrophages differentiated from freshly prepared peripheral blood monocytes during culture of 1–2 days. A transient rise in [Ca2+]i (duration 3–4 min) occurred in 10–15 macrophages in the vicinity of a single tumour cell that was attacked and permeabilized by a natural killer cell in a dish. Similar Ca2+ transients were produced in 90% of macrophages by application of supernatant obtained after inducing the lysis of tumour cells with hypo-osmotic treatment. Ca2+ transients were also evoked by ATP in a dose-dependent manner between 0·1 and 100 μm. The ATP-induced [Ca2+]i rise was reduced to less than one-quarter in Ca2+-free medium, indicating that it is mainly due to Ca2+ entry and partly due to intracellular Ca2+ release. UTP (P2U purinoceptor agonist) was more potent than ATP or 2-chloro-ATP (P2Y agonist). Oxidized ATP (P2Z antagonist) had no inhibitory effect. Both cell lysate- and ATP-induced Ca2+ responses were inhibited by Reactive Blue 2 (P2Y and P2U antagonist) to the same extent, but were not affected by PPADS (P2X antagonist). Sequential stimuli by cell lysate and ATP underwent long-lasting desensitization in the Ca2+ response to the second stimulation. The present study supports the view that macrophages respond to signal messengers discharged from damaged or dying cells to be ingested, and ATP is at least one of the messengers and causes a [Ca2+]i rise via P2U and P2Y receptors

    Functional architecture of the nicotinic acetylcholine receptor: A prototype of ligand-gated ion channels

    No full text
    corecore