14 research outputs found

    Application properties of permanent magnets Nd-Fe-B

    No full text
    The paper presents results of corrosion wear of bonded and sintered hard magnetic materials Nd-Fe-B and magnets covered by protective polymer, lacquer and metal coatings. Corrosion tests were made in the water and in 5% NaCl solution environment. It was found that the bonded magnets with the polymer matrix demonstrate better corrosion resistance than the sintered magnets. Employment of the protective coatings on the Nd-Fe-B bonded magnets surfaces may feature the effective protection of the substrate material from the corrosive action of the aggressive agent. Analysis of the surface topography of the deposited protective coatings makes it possible to determine coating defects resulting from the action of the aggressive agent. The best protection from the corrosive environment is provided by the polymer coatings. Lower corrosion protection by protective coating was found in the case of sintered magnets. The corrosion damage process of magnets covered with the protective coatings starts in the coating failure location and is connected with the further damage proceeding both into the material and on its surface

    Artificial intelligence and virtual environment application for materials design methodology

    No full text
    The purpose of this study is to develop a methodology for material design. This methogology will enabling the selection of production descriptors to ensure the required mechanical properties of structural steels specified by the designer of machinery and equipment. The selection is performed by using a computational model developed with use of artificial intelligence methods and virtual environment. The model is designed to provide impact examinations of these factors on the mechanical properties of steel only in the computing environment. Virtual computing environment allows full usage of the developed intelligent model of non-alloy and alloy structural steel properties and provides an easy, intuitive and user-friendly way to designate these properties for products after heat and plastic treatment. Also, very easy is the determination of chemical composition, treatment conditions and geometric dimensions on the basis of the steels mechanical properties. The proposed solutions allow the usage of developed virtual environment as a new medium in both, the scientific work performed remotely, as well as in education during classes. It is also possible the extension of this model to other groups of materials, not just for steel

    Effect of Milling Time on Microstructure and Properties of AA6061/MWCNTS Composite Powders / Wpływ Czasu Mielenia Na Strukturę I Własności Proszk Ów Kompozytowyc H AA6061/MWCNTS

    No full text
    The main purpose of this work is to determine the effect of milling time on microstructure as well as technological properties of aluminium matrix nanocomposites reinforced with multi-walled carbon nanotubes (MWCNTs) using powder metallurgy techniques, including mechanical alloying. The main problem of the study is the agglomeration and uneven distribution of carbon nanotubes in the matrix material and interface reactivity also. In order to reach uniform dispersion of carbon nanotubes in aluminium alloy matrix, 5÷20 h of mechanical milling in the planetary mill was used. It was found that the mechanical milling process has a strong influence on the characteristics of powders, by changing the globular morphology of as-received powder during mechanical milling process to flattened one, due to particle plastic deformation followed by cold welding and fracturing of deformed and hardened enough particles, which allows to obtain equiaxial particles again. The obtained composites are characterised by the structure of evenly distributed, disperse reinforcing particles in fine grain matrix of AA6061, facilitate the obtainment of higher values of mechanical properties, compared to the initial alloy. On the basis of micro-hardness, analysis has found that a small addition of carbon nanotubes increases nanocomposite hardness

    Fabrication Of Scaffolds From Ti6Al4V Powders Using The Computer Aided Laser Method

    No full text
    The aim of the research, the results of which are presented in the paper, is to fabricate, by Selective Laser Melting (SLM), a metallic scaffold with Ti6Al4V powder based on a virtual model corresponding to the actual loss of a patient’s craniofacial bone. A plaster cast was made for a patient with a palate recess, and the cast was then scanned with a 3D scanner to create a virtual 3D model of a palate recess, according to which a 3D model of a solid implant was created using specialist software. The virtual 3D solid implant model was converted into a 3D porous implant model after designing an individual shape of the unit cell conditioning the size and three-dimensional shape of the scaffold pores by multiplication of unit cells. The data concerning a virtual 3D porous implant model was transferred into a selective laser melting (SLM) device and a metallic scaffold was produced from Ti6Al4V powder with this machine, which was subjected to surface treatment by chemical etching. An object with certain initially adopted assumptions, i.e. shape and geometric dimensions, was finally achieved, which perfectly matches the patient bone recesses. The scaffold created was subjected to micro-and spectroscopic examinations

    Investigations on Wear Mechanisms of PVD Coatings on Carbides and Sialons

    No full text
    The paper presents the results on the wear resistance of PVD coatings on cutting inserts made from sintered carbide and sialon ceramics. The exploitative properties of coatings in technological cutting trials were defined in the paper, which also examined the adhesion of coatings to the substrate, the thickness of the coating, and the microhardness. As a result, it was found that isomorphic coating with AlN-h phase of covalent interatomic bonds exhibits much better adhesion to the sialon substrate than isomorphic coating with titanium nitride TiN. These coatings assure the high wear resistance of the coated tools, and the high adhesion combined with the high microhardness and fine-grained structure assure an increase in the exploitative life of the coated tools. In the case of coatings on substrate made from sintered carbide, there was a significant influence on the properties of the tools coated with them as concerns the existence of the diffusion zone between the substrate and the coating

    Thermal characterization of halloysite materials for porous ceramic preforms

    No full text
    Purpose: The aim of the study was to investigate the possibility of sintering raw (natural) halloysite and pure halloysite to produce porous ceramic preforms, and determination of sintering temperature based on the results of investigations into thermal effects, linear changes and phase transitions. Design/methodology/approach: Due to mullitisation ability of halloysite at high temperature, alternative applications based on the sintering technology (including the production of reinforcement of metal matrix composites) are being searched for. Pure halloysite and Dunino halloysite were selected for the study. Findings: Pure halloysite, characterized by low impurities, dimensional stability during sintering, softening temperature above 1500ºC and ability to transform into mullite at temperatures above 950ºC could be used as a base for the production of sintered, porous mullite preforms. Research limitations/implications: Presence of impurities in Dunino halloysite, contribute to the shift of the sintering temperature towards lower temperatures and caused a rapid and uncontrolled shrinkage of the sample and the appearance of the softening temperature at 1300ºC. Practical implications: Based on the research of thermal (DTA/TG, linear changes in high-temperature microscopy) and XRD studies it is possible to determine the sintering temperature of pure halloysite to manufacture the porous mullite preforms with open porosity. Originality/value: The received results show the possibility of obtaining the new mullite preforms based on pure halloysite

    Wpływ struktury powłok PVD i CVD na trwałość spiekanych ostrzy skrawających

    No full text
    In the work it was demonstrated that the exploitative stability of edges from tool ceramics and sintered carbides coated with gradient and multilayer PVD and CVD coatings depends mainly on the adherence of the coatings to the substrate, while the change of coating microhardness from 2300 to 3500 HV0.05, the size of grains and their thickness affect the durability of the edges to a lesser extent. It was found that some coatings showed a fine-grained structure. The coatings which contained the AlN phase with hexagonal lattice showed a considerably higher adhesion to the substrate from sialon ceramics rather than the coatings containing the TiN phase. Better adherence of the coatings containing the AlN phase with hexagonal lattice is connected with the same kind of interatomic bonds (covalent) in material of both coating and ceramic substrate. In the paper the exploitative properties of the investigated coatings in the technological cutting trials were also determined. The models of artificial neural network, which demonstrate a relationships between the edge stability and coating properties such as: critical load, microhardness, thickness and size of grains were worked out.W pracy wykazano, że trwałość eksploatacyjna ostrzy skrawających z ceramiki narzędziowej i węglików spiekanych pokrytych gradientowymi i wielowarstwowymi powłokami PVD oraz CVD zależy głównie od przyczepności powłok do podłoża, natomiast zmiana mikrotwardości w zakresie od 2300 do 3500 HV0.05. wielkości ziarn oraz ich grubości w mniejszym stopniu wpływają na trwałość ostrzy. Powłoki wykazują drobnoziarnistą strukturę. Powłoki zawierające fazę AlN o sieci heksagonalnej wykazują lepszą przyczepność do sialonowego podłoża niż powłoki zawierające fazę TiN. Lepsza przyczepność powłok zawierających fazę A1N o sieci heksagonalnej związana jest z takim samym rodzajem wiązań międzyatomowych (kowalencyjnych) w materiale powłoki i ceramicznego podłoża. W pracy określono także własności eksploatacyjne powłok w technologicznej próbie toczenia. Zależności pomiędzy trwałością ostrza a własnościami powłok takimi jak obciążenie krytyczne, mikrotwardość, grubość i wielkość ziarna określono z zastosowaniem sztucznych sieci neuronowych

    The Effect of Laser Surface Treatment on Structure and Mechanical Properties Aluminium Alloy ENAC-AlMg9

    No full text
    In this work, the influence of a high power diode laser surface treatment on the structure and properties of aluminium alloy has been determined. The aim of this study was to improve the mechanical and tribological properties of the surface layer of the aluminium alloy by simultaneously melting and feeding tungsten carbide particles into the molten pool. During the process was used high-power diode laser HPDL. In order to remelt the aluminium alloy surface the HPDL laser of 1.8, 2.0 and 2.2 kW laser beam power has been used. The linear laser scan rate of the beam was set 0.5 cm/s. In order to protect the liquid metal during laser treatment was used argon. As a base material was used aluminium alloy ENAC-AlMg9. To improve the surface mechanical and wear properties of the applied aluminium alloy was used biphasic tungsten carbide WC/W2C. The size of alloying powder was in the range 110-210 µm. The ceramic powder was introduced in the remelting zone by a gravity feeder at a constant rate of 8 g/m
    corecore