263 research outputs found

    Metabolism of alcaligenes denitrificans in biofilm vs planktonic cells

    Get PDF
    Aims: To compare the effect of phosphorous concentration (200 mg P 1-1 and 20 mg P 1-1) on the denitrifying efficiency of Alcaligenes denitrificans when in the form of planktonic cells or in the form of a biofilm, and to select the most adequate C/N ratio. Methods and Results: Two types of assays were carried out: with planktonic cells and with cells in biofilm form. Anoxic bottles with the appropriate C/N and phosphorous concentration were incubated at 30°C and submitted to orbital shaking at 150 rev min-1. The specific activity of cells in biofilm form, in terms of substrate consumption, was significantly higher than cells in planktonic form. With regard to the effect of increasing phosphorous concentration, an increase in specific activity was also only evident when the cells were in biofilm form. Conclusions: The two forms showed different performances and phosphorous concentration only markedly affected the biofilm form. Significance and Impact of the Study: The importance of the C/N/P ratio in the denitrification process is demonstrated. As there was no report in the literature about the stoichiometric relationship of heterotrophic denitrification with citrate, its stoichiometry, including the requirement for cell synthesis, was determined.Instituto de Biotecnologia e Química Fina (IBQF). PRAXIS XXI

    Electromagnetic catalysis of the radiative transitions of νiνjγ\nu_i \rightarrow \nu_j \gamma type in the field of an intense monochromatic wave

    Full text link
    The radiative decay of the massive neutrino νiνjγ\nu_i \rightarrow \nu_j \gamma in a circularly polarized electromagnetic wave is investigated within the Standard theory with lepton mixing. The decay probability in the wave field does not contain a threshold factor (1mi/mj)\sim ( 1 - m_i / m_j ) as opposed to the decay probability in a vacuum or in a constant uniform external field. The phenomenon of the gigantic enhancement ( 1033\sim 10^{33} ) of the neutrino decay probability in external wave field is discovered. The probability of the photon splitting into the neutrino pair is obtained. (Published in Phys.Lett.B 321 (1994) 108).Comment: 10 pages, LaTeX (using emlines2.sty), Yaroslavl, Yaroslavl State University preprint YARU-HE-93/0

    Can black holes be torn up by phantom dark energy in cyclic cosmology?

    Full text link
    Infinitely cyclic cosmology is often frustrated by the black hole problem. It has been speculated that this obstacle in cyclic cosmology can be removed by taking into account a peculiar cyclic model derived from loop quantum cosmology or the braneworld scenario, in which phantom dark energy plays a crucial role. In this peculiar cyclic model, the mechanism of solving the black hole problem is through tearing up black holes by phantom. However, using the theory of fluid accretion onto black holes, we show in this paper that there exists another possibility: that black holes cannot be torn up by phantom in this cyclic model. We discussed this possibility and showed that the masses of black holes might first decrease and then increase, through phantom accretion onto black holes in the expanding stage of the cyclic universe.Comment: 6 pages, 2 figures; discussions adde

    Phantom Field with O(N) Symmetry in Exponential Potential

    Full text link
    In this paper, we study the phase space of phantom model with O(\emph{N}) symmetry in exponential potential. Different from the model without O(\emph{N}) symmetry, the introduction of the symmetry leads to a lower bound w>3w>-3 on the equation of state for the existence of stable phantom dominated attractor phase. The reconstruction relation between the potential of O(\textit{N}) phantom system and red shift has been derived.Comment: 5 pages, 3 figures, replaced with the version to appear on Phys. Rev.

    Scaling Solutions and reconstruction of Scalar Field Potentials

    Get PDF
    Starting from the hypothesis of scaling solutions, the general exact form of the scalar field potential is found. In the case of two fluids, it turns out to be a negative power of hyperbolic sine. In the case of three fluids the analytic form is not found, but is obtained by quadratures.Comment: 5 pages, 2 figures, some changes in references and figures caption

    Scalar field exact solutions for non-flat FLRW cosmology: A technique from non-linear Schr\"odinger-type formulation

    Full text link
    We report a method of solving for canonical scalar field exact solution in a non-flat FLRW universe with barotropic fluid using non-linear Schr\"{o}dinger (NLS)-type formulation in comparison to the method in the standard Friedmann framework. We consider phantom and non-phantom scalar field cases with exponential and power-law accelerating expansion. Analysis on effective equation of state to both cases of expansion is also performed. We speculate and comment on some advantage and disadvantage of using the NLS formulation in solving for the exact solution.Comment: 12 pages, GERG format, Reference added. accepted by Gen. Relativ. and Gra

    Expanding Universe: Thermodynamical Aspects From Different Models

    Full text link
    The pivotal point of the paper is to discuss the behavior of temperature, pressure, energy density as a function of volume along with determination of caloric EoS from following two model: w(z)=w0+w1ln(1+z)w(z)=w_{0}+w_{1}\ln(1+z) & w(z)=1+(1+z)3A1+2A2(1+z)A0+2A1(1+z)+A2(1+z)2 w(z)=-1+\frac{(1+z)}{3}\frac{A_{1}+2A_{2}(1+z)}{A_{0}+2A_{1}(1+z)+A_{2}(1+z)^{2}}. The time scale of instability for this two models is discussed. In the paper we then generalize our result and arrive at general expression for energy density irrespective of the model. The thermodynamical stability for both of the model and the general case is discussed from this viewpoint. We also arrive at a condition on the limiting behavior of thermodynamic parameter to validate the third law of thermodynamics and interpret the general mathematical expression of integration constant U0U_{0} (what we get while integrating energy conservation equation) physically relating it to number of micro states. The constraint on the allowed values of the parameters of the models is discussed which ascertains stability of universe. The validity of thermodynamical laws within apparent and event horizon is discussed.Comment: 16 pages, 3 figures(Accepted for publication in "Astrophysics and Space Science"

    Measuring black-hole parameters and testing general relativity using gravitational-wave data from space-based interferometers

    Get PDF
    Among the expected sources of gravitational waves for the Laser Interferometer Space Antenna (LISA) is the capture of solar-mass compact stars by massive black holes residing in galactic centers. We construct a simple model for such a capture, in which the compact star moves freely on a circular orbit in the equatorial plane of the massive black hole. We consider the gravitational waves emitted during the late stages of orbital evolution, shortly before the orbiting mass reaches the innermost stable circular orbit. We construct a simple model for the gravitational-wave signal, in which the phasing of the waves plays the dominant role. The signal's behavior depends on a number of parameters, including μ\mu, the mass of the orbiting star, MM, the mass of the central black hole, and JJ, the black hole's angular momentum. We calculate, using our simplified model, and in the limit of large signal-to-noise ratio, the accuracy with which these quantities can be estimated during a gravitational-wave measurement. Our simplified model also suggests a method for experimentally testing the strong-field predictions of general relativity.Comment: ReVTeX, 16 pages, 5 postscript figure

    Planck-scale quintessence and the physics of structure formation

    Get PDF
    In a recent paper we considered the possibility of a scalar field providing an explanation for the cosmic acceleration. Our model had the interesting properties of attractor-like behavior and having its parameters of O(1) in Planck units. Here we discuss the effect of the field on large scale structure and CMB anisotropies. We show how some versions of our model inspired by "brane" physics have novel features due to the fact that the scalar field has a significant role over a wider range of redshifts than for typical "dark energy" models. One of these features is the additional suppression of the formation of large scale structure, as compared with cosmological constant models. In light of the new pressures being placed on cosmological parameters (in particular H_0) by CMB data, this added suppression allows our "brane" models to give excellent fits to both CMB and large scale structure data.Comment: 18 pages, 12 figures, submitted to PR

    Interacting New Agegraphic Dark Energy in a Cyclic Universe

    Full text link
    The main goal of this work is investigation of NADE in the cyclic universe scenario. Since, cyclic universe is explained by a phantom phase (ω<1\omega<-1), it is shown when there is no interaction between matter and dark energy, ADE and NADE do not produce a phantom phase, then can not describe cyclic universe. Therefore, we study interacting models of ADE and NADE in the modified Friedmann equation. We find out that, in the high energy regime, which it is a necessary part of cyclic universe evolution, only NADE can describe this phantom phase era for cyclic universe. Considering deceleration parameter tells us that the universe has a deceleration phase after an acceleration phase, and NADE is able to produce a cyclic universe. Also it is found valuable to study generalized second law of thermodynamics. Since the loop quantum correction is taken account in high energy regime, it may not be suitable to use standard treatment of thermodynamics, so we turn our attention to the result of \citep{29}, which the authors have studied thermodynamics in loop quantum gravity, and we show that which condition can satisfy generalized second law of thermodynamics.Comment: 8 pages, 3 figure
    corecore