12,727 research outputs found

    Weak coupling d-wave BCS superconductivity and unpaired electrons in overdoped La_{2-x}Sr_{x}CuO_{4} single crystals

    Get PDF
    The low-temperature specific heat (SH) of overdoped La_{2-x}Sr_{x}CuO_{4} single crystals (0.178=<x=<0.290) has been measured. For the superconducting samples (0.178=<x=<0.238), the derived gap values (without any adjusting parameters) approach closely onto the theoretical prediction \Delta_{0}=2.14k_{B}T_{c} for the weak-coupling d-wave BCS superconductivity. In addition, the residual term \gamma(0) of SH at H=0 increases with x dramatically when beyond x~0.22, and finally evolves into the value of a complete normal metallic state at higher doping levels, indicating growing amount of unpaired electrons. We argue that this large \gamma(0) cannot be simply attributed to the pair breaking induced by the impurity scattering, instead the phase separation is possible.Comment: 6 pages, 6 figures; Contents added; Accepted for publication in Phys. Rev.

    Evidence for s-wave pairing from measurement on lower critical field in MgCNi3MgCNi_3

    Full text link
    Magnetization measurements in the low field region have been carefully performed on a well-shaped cylindrical and an ellipsoidal sample of superconductor MgCNi3MgCNi_3. Data from both samples show almost the same results. The lower critical field Hc1H_{c1} and the London penetration depth λ\lambda are thus derived. It is found that the result of normalized superfluid density λ2(0)/λ2(T)\lambda^2(0)/\lambda^2(T) of MgCNi3MgCNi_3 can be well described by BCS prediction with the expectation for an isotropic s-wave superconductivity.Comment: To appear in Phys. Rev.

    Spin-orbit scattering in quantum diffusion of massive Dirac fermions

    Get PDF
    Effect of spin-orbit scattering on quantum diffusive transport of two-dimensional massive Dirac fermions is studied by the diagrammatic technique. The quantum diffusion of massive Dirac fermions can be viewed as a singlet Cooperon in the massless limit and a triplet Cooperon in the large-mass limit. The spin-orbit scattering behaves like random magnetic fields only to the triplet Cooperon, and suppresses the weak localization of Dirac fermions in the large-mass regime. This behavior suggests an experiment to detect the weak localization of bulk subbands in topological insulator thin films, in which a narrowing of the cusp of the negative magnetoconductivity is expected after doping heavy-element impurities. Finally, a detailed comparison between the conventional two-dimensional electrons and Dirac fermions is presented for impurities of orthogonal, symplectic, and unitary symmetries.Comment: 5 pages, 3 figures, 2 tables. To be submitted, comments are welcom
    corecore