453 research outputs found

    New application of decomposition of U(1) gauge potential:Aharonov-Bohm effect and Anderson-Higgs mechanism

    Full text link
    In this paper we study the Aharonov-Bohm (A-B) effect and Anderson-Higgs mechanism in Ginzburg-Landau model of superconductors from the perspective of the decomposition of U(1) gauge potential. By the Helmholtz theorem, we derive exactly the expression of the transverse gauge potential A\vec{A}_\perp in A-B experiment, which is gauge-invariant and physical. For the case of a bulk superconductor, we find that the gradient of the total phase field θ\theta provides the longitudinal component A{\vec A}_{\parallel}, which reflects the Anderson-Higgs mechanism. For the case of a superconductor ring, the gradient of the longitudinal phase field θ1\theta_1 provides the longitudinal component A{\vec A}_{\parallel}, while the transverse phase field θ2\theta_2 produces new physical effects such as the flux quantization inside a superconducting ring.Comment: 6 pages, no figures, final version to appear in Modern Physics Letters

    A Note on Inflation with Tachyon Rolling on the Gauss-Bonnet Brane

    Full text link
    In this paper we study the tachyonic inflation in brane world cosmology with Gauss-Bonnet term in the bulk. We obtain the exact solution of slow roll equations in case of exponential potential. We attempt to implement the proposal of Lidsey and Nunes, astro-ph/0303168, for the tachyon condensate rolling on the Gauss-Bonnet brane and discuss the difficulties associated with the proposal.Comment: RevTex4, 5 pages, no figures, Minor clarifications added and references updated, To appear in PR

    Statistical Properties of Charmonium Spectrum and a New Mechanism of J/\psi Suppression

    Get PDF
    The statistical properties of Charmonium energy spectrum determined by the Bethe-Salpeter equation are investigated. It is found that the regular motion of the ccˉc\bar{c} system can be expected at a small value of color screening mass but the chaotic motion at a large one. It is shown that the level mixing due to color screening serves as a new mechanism resulting in the J/ψ\psi suppression. Moreover, this kind of suppression can occur before the color screening mass reaches its critical value for J/ψ\psi dissociation. It implies that a strong J/ψ\psi suppression is possible in the absence of dissociation of J/ψ\psi.Comment: 13 latex pages, 2 figures. Phys. Rev. C in pres

    New Mechanics of Traumatic Brain Injury

    Full text link
    The prediction and prevention of traumatic brain injury is a very important aspect of preventive medical science. This paper proposes a new coupled loading-rate hypothesis for the traumatic brain injury (TBI), which states that the main cause of the TBI is an external Euclidean jolt, or SE(3)-jolt, an impulsive loading that strikes the head in several coupled degrees-of-freedom simultaneously. To show this, based on the previously defined covariant force law, we formulate the coupled Newton-Euler dynamics of brain's micro-motions within the cerebrospinal fluid and derive from it the coupled SE(3)-jolt dynamics. The SE(3)-jolt is a cause of the TBI in two forms of brain's rapid discontinuous deformations: translational dislocations and rotational disclinations. Brain's dislocations and disclinations, caused by the SE(3)-jolt, are described using the Cosserat multipolar viscoelastic continuum brain model. Keywords: Traumatic brain injuries, coupled loading-rate hypothesis, Euclidean jolt, coupled Newton-Euler dynamics, brain's dislocations and disclinationsComment: 18 pages, 1 figure, Late

    An Updated Search of Steady TeV γ\gamma-Ray Point Sources in Northern Hemisphere Using the Tibet Air Shower Array

    Full text link
    Using the data taken from Tibet II High Density (HD) Array (1997 February-1999 September) and Tibet-III array (1999 November-2005 November), our previous northern sky survey for TeV γ\gamma-ray point sources has now been updated by a factor of 2.8 improved statistics. From 0.00.0^{\circ} to 60.060.0^{\circ} in declination (Dec) range, no new TeV γ\gamma-ray point sources with sufficiently high significance were identified while the well-known Crab Nebula and Mrk421 remain to be the brightest TeV γ\gamma-ray sources within the field of view of the Tibet air shower array. Based on the currently available data and at the 90% confidence level (C.L.), the flux upper limits for different power law index assumption are re-derived, which are approximately improved by 1.7 times as compared with our previous reported limits.Comment: This paper has been accepted by hepn

    JUNO Conceptual Design Report

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is proposed to determine the neutrino mass hierarchy using an underground liquid scintillator detector. It is located 53 km away from both Yangjiang and Taishan Nuclear Power Plants in Guangdong, China. The experimental hall, spanning more than 50 meters, is under a granite mountain of over 700 m overburden. Within six years of running, the detection of reactor antineutrinos can resolve the neutrino mass hierarchy at a confidence level of 3-4σ\sigma, and determine neutrino oscillation parameters sin2θ12\sin^2\theta_{12}, Δm212\Delta m^2_{21}, and Δmee2|\Delta m^2_{ee}| to an accuracy of better than 1%. The JUNO detector can be also used to study terrestrial and extra-terrestrial neutrinos and new physics beyond the Standard Model. The central detector contains 20,000 tons liquid scintillator with an acrylic sphere of 35 m in diameter. \sim17,000 508-mm diameter PMTs with high quantum efficiency provide \sim75% optical coverage. The current choice of the liquid scintillator is: linear alkyl benzene (LAB) as the solvent, plus PPO as the scintillation fluor and a wavelength-shifter (Bis-MSB). The number of detected photoelectrons per MeV is larger than 1,100 and the energy resolution is expected to be 3% at 1 MeV. The calibration system is designed to deploy multiple sources to cover the entire energy range of reactor antineutrinos, and to achieve a full-volume position coverage inside the detector. The veto system is used for muon detection, muon induced background study and reduction. It consists of a Water Cherenkov detector and a Top Tracker system. The readout system, the detector control system and the offline system insure efficient and stable data acquisition and processing.Comment: 328 pages, 211 figure

    Genomewide association study of leprosy.

    Get PDF
    BACKGROUND: The narrow host range of Mycobacterium leprae and the fact that it is refractory to growth in culture has limited research on and the biologic understanding of leprosy. Host genetic factors are thought to influence susceptibility to infection as well as disease progression. METHODS: We performed a two-stage genomewide association study by genotyping 706 patients and 1225 controls using the Human610-Quad BeadChip (Illumina). We then tested three independent replication sets for an association between the presence of leprosy and 93 single-nucleotide polymorphisms (SNPs) that were most strongly associated with the disease in the genomewide association study. Together, these replication sets comprised 3254 patients and 5955 controls. We also carried out tests of heterogeneity of the associations (or lack thereof) between these 93 SNPs and disease, stratified according to clinical subtype (multibacillary vs. paucibacillary). RESULTS: We observed a significant association (P<1.00x10(-10)) between SNPs in the genes CCDC122, C13orf31, NOD2, TNFSF15, HLA-DR, and RIPK2 and a trend toward an association (P=5.10x10(-5)) with a SNP in LRRK2. The associations between the SNPs in C13orf31, LRRK2, NOD2, and RIPK2 and multibacillary leprosy were stronger than the associations between these SNPs and paucibacillary leprosy. CONCLUSIONS: Variants of genes in the NOD2-mediated signaling pathway (which regulates the innate immune response) are associated with susceptibility to infection with M. leprae
    corecore