372 research outputs found

    Smooth vortex precession in superfluid 4He

    Full text link
    We have measured a precessing superfluid vortex line, stretched from a wire to the wall of a cylindrical cell. By contrast to previous experiments with a similar geometry, the motion along the wall is smooth. The key difference is probably that our wire is substantially off center. We verify several numerical predictions about the motion, including an asymmetry in the precession signature, the behavior of pinning events, and the temperature dependence of the precession.Comment: 8 pages, 8 figure

    Depinning of a superfluid vortex line by Kelvin waves

    Full text link
    We measure the interaction of a single superfluid vortex with surface irregularities. While vortex pinning in superconductors usually becomes weaker at higher temperatures, we find the opposite behavior. The pinning steadily increases throughout our measurement range, from 0.15Tc to over 0.5Tc. We also find that moving the other end of the vortex decreases the pinning, so we propose Kelvin waves along the vortex as a depinning mechanism.Comment: 5 figures; substantial revision including 2 new figure

    Energy Loss from a Moving Vortex in Superfluid Helium

    Full text link
    We present measurements on both energy loss and pinning for a vortex terminating on the curved surface of a cylindrical container. We vary surface roughness, cell diameter, fluid velocity, and temperature. Although energy loss and pinning both arise from interactions between the vortex and the surface, their dependences on the experimental parameters differ, suggesting that different mechanisms govern the two effects. We propose that the energy loss stems from reconnections with a mesh of microscopic vortices that covers the cell wall, while pinning is dominated by other influences such as the local fluid velocity.Comment: 8 pages, 6 figure

    Curves of every genus with many points, II: Asymptotically good families

    Get PDF
    We resolve a 1983 question of Serre by constructing curves with many points of every genus over every finite field. More precisely, we show that for every prime power q there is a positive constant c_q with the following property: for every non-negative integer g, there is a genus-g curve over F_q with at least c_q * g rational points over F_q. Moreover, we show that there exists a positive constant d such that for every q we can choose c_q = d * (log q). We show also that there is a constant c > 0 such that for every q and every n > 0, and for every sufficiently large g, there is a genus-g curve over F_q that has at least c*g/n rational points and whose Jacobian contains a subgroup of rational points isomorphic to (Z/nZ)^r for some r > c*g/n.Comment: LaTeX, 18 page

    Packing Fractions and Maximum Angles of Stability of Granular Materials

    Full text link
    In two-dimensional rotating drum experiments, we find two separate influences of the packing fraction of a granular heap on its stability. For a fixed grain shape, the stability increases with packing fraction. However, in determining the relative stability of different grain shapes, those with the lowest average packing fractions tend to form the most stable heaps. We also show that only the configuration close to the surface of the pile figures prominently.Comment: 4 pages, 4 figure

    Pressure and linear heat capacity in the superconducting state of thoriated UBe13

    Full text link
    Even well below Tc, the heavy-fermion superconductor (U,Th)Be13 has a large linear term in its specific heat. We show that under uniaxial pressure, the linear heat capacity increases in magnitude by more than a factor of two. The change is reversible and suggests that the linear term is an intrinsic property of the material. In addition, we find no evidence of hysteresis or of latent heat in the low-temperature and low-pressure portion of the phase diagram, showing that all transitions in this region are second order.Comment: 5 pages, 4 figure
    corecore