10,456 research outputs found
Observed Tightening of Tropical Ascent in Recent Decades and Linkage to Regional Precipitation Changes
Climate models predict that the tropical ascending region should tighten under global warming, but observational quantification of the tightening rate is limited. Here we show that the observed spatial extent of the relatively moist, rainy and cloudy regions in the tropics associated with large‐scale ascent has been decreasing at a rate of −1%/decade (−5%/K) from 1979 to 2016, resulting from combined effects of interdecadal variability and anthropogenic forcings, with the former contributing more than the latter. The tightening of tropical ascent is associated with an increase in the occurrence frequency of extremely strong ascent, leading to an increase in the average precipitation rate in the top 1% of monthly rainfall in the tropics. At the margins of the convective zones such as the Southeast Amazonia region, the contraction of large‐scale ascent is related to a long‐term drying trend about −3.2%/decade in the past 38 years
Robust Quantum State Transfer in Random Unpolarized Spin Chains
We propose and analyze a new approach for quantum state transfer between
remote spin qubits. Specifically, we demonstrate that coherent quantum coupling
between remote qubits can be achieved via certain classes of random,
unpolarized (infinite temperature) spin chains. Our method is robust to
coupling strength disorder and does not require manipulation or control over
individual spins. In principle, it can be used to attain perfect state transfer
over arbitrarily long range via purely Hamiltonian evolution and may be
particularly applicable in a solid-state quantum information processor. As an
example, we demonstrate that it can be used to attain strong coherent coupling
between Nitrogen-Vacancy centers separated by micrometer distances at room
temperature. Realistic imperfections and decoherence effects are analyzed.Comment: 4 pages, 2 figures. V2: Modified discussion of disorder, added
references - final version as published in Phys. Rev. Let
Two-dimensional molecular para-hydrogen and ortho-deuterium at zero temperature
We study molecular para-hydrogen (p-) and ortho-deuterium
(o-) in two dimensions and in the limit of zero temperature by
means of the diffusion Monte Carlo method. We report energetic and structural
properties of both systems like the total and kinetic energy per particle,
radial pair distribution function, and Lindemann's ratio in the low pressure
regime. By comparing the total energy per particle as a function of the density
in liquid and solid p-, we show that molecular para-hydrogen, and
also ortho-deuterium, remain solid at zero temperature. Interestingly, we
assess the quality of three different symmetrized trial wave functions, based
on the Nosanow-Jastrow model, in the p- solid film at the
variational level. In particular, we analyze a new type of symmetrized trial
wave function which has been used very recently to describe solid He and
found that also characterizes hydrogen satisfactorily. With this wave function,
we show that the one-body density matrix of solid p- possesses off-diagonal long range order, with a condensate fraction
that increases sizably in the negative pressure regime.Comment: 11 pages, 9 figure
Two-photon interference with two independent pseudo-thermal sources
The nature of two-photon interference is a subject that has aroused renewed
interest in recent years and is still under debate. In this paper we report the
first observation of two-photon interference with independent pseudo-thermal
sources in which sub-wavelength interference is observed. The phenomenon may be
described in terms of the classical statistical distribution of the two sources
and their optical transfer functions.Comment: Phys. Rev. A 74, 053807 (2006
- …