18 research outputs found

    Impact of drivers on real-driving fuel consumption and emissions performance

    No full text
    Eco-driving has attracted great attention as a cost-effective and immediate measure to reduce fuel consumption significantly. Understanding the impact of driver behaviour on real driving emissions (RDE) is of great importance for developing effective eco-driving devices and training programs. Therefore, this study was conducted to investigate the performance of different drivers using a portable emission measurement system. In total, 30 drivers, including 15 novice and 15 experienced drivers, were recruited to drive the same diesel vehicle on the same route, to minimise the effect of uncontrollable real-world factors on the performance evaluation. The results show that novice drivers are less skilled or more aggressive than experienced drivers in using the accelerator pedal, leading to higher vehicle and engine speeds. As a result, fuel consumption rates of novice drivers vary in a slightly greater range than those of experienced drivers, with a marginally higher (2%) mean fuel consumption. Regarding pollutant emissions, CO and THC emissions of all drivers are well below the standard limits, while NOx and PM emissions of some drivers significantly exceed the limits. Compared with experienced drivers, novice drivers produce 17% and 29% higher mean NOx and PM emissions, respectively. Overall, the experimental results reject the hypothesis that driver experience has significant impacts on fuel consumption performance. The real differences lie in the individual drivers, as the worst performing drivers have significantly higher fuel consumption rates than other drivers, for both novice and experienced drivers. The findings suggest that adopting eco-driving skills could deliver significant reductions in fuel consumption and emissions simultaneously for the worst performing drivers, regardless of driving experience

    Functional nanoporous graphene superlattice

    No full text
    Abstract Two-dimensional (2D) superlattices, formed by stacking sublattices of 2D materials, have emerged as a powerful platform for tailoring and enhancing material properties beyond their intrinsic characteristics. However, conventional synthesis methods are limited to pristine 2D material sublattices, posing a significant practical challenge when it comes to stacking chemically modified sublattices. Here we report a chemical synthesis method that overcomes this challenge by creating a unique 2D graphene superlattice, stacking graphene sublattices with monodisperse, nanometer-sized, square-shaped pores and strategically doped elements at the pore edges. The resulting graphene superlattice exhibits remarkable correlations between quantum phases at both the electron and phonon levels, leading to diverse functionalities, such as electromagnetic shielding, energy harvesting, optoelectronics, and thermoelectrics. Overall, our findings not only provide chemical design principles for synthesizing and understanding functional 2D superlattices but also expand their enhanced functionality and extensive application potential compared to their pristine counterparts
    corecore