745 research outputs found
Electromagnetic waves and bursty electron acceleration: implications from Freja
International audienceDispersive Alfvén wave activity is identified in four dayside auroral oval events measured by the Freja satellite. The events are characterized by ion injection, bursty electron precipitation below about 1 keV, transverse ion heating and broadband extremely low frequency (ELF) emissions below the lower hybrid cutoff frequency (a few kHz). Large-scale density depletions/cavities, as determined by the Langmuir probe measurements, and strong electrostatic emissions are often observed simultaneously. A correlation study has been carried out between the E and B field fluctuations below 64 Hz and 10 Hz, respectively, (the DC instruments upper threshold) and the characteristics of the precipitating electrons. This study revealed that the energisation of electrons is indeed related to the broadband ELF emissions and that the electrostatic component plays a predominant role during very active magnetospheric conditions. Furthermore, the effect of the ELF electromagnetic emissions on the larger scale field-aligned current systems has been investigated, and it is found that such an effect cannot be detected. Instead, the Alfvénic activity creates a local region of field-aligned currents. It is suggested that dispersive Alfvén waves set up these local field-aligned current regions and, in turn, trigger more electrostatic emissions during certain conditions. In these regions, ions are transversely heated, and large-scale density depletions/cavities may be created during especially active periods
ELVIS - ELectromagnetic Vector Information Sensor
The ELVIS instrument was recently proposed by the authors for the Indian
Chandrayaan-1 mission to the Moon and is presently under consideration by the
Indian Space Research Organisation (ISRO). The scientific objective of ELVIS is
to explore the electromagnetic environment of the moon. ELVIS samples the full
three-dimensional (3D) electric field vector, E(x,t), up to 18 MHz, with
selective Nyqvist frequency bandwidths down to 5 kHz, and one component of the
magnetic field vector, B(x,t), from a few Hz up to 100 kHz.As a transient
detector, ELVIS is capable of detecting pulses with a minimum pulse width of 5
ns. The instrument comprises three orthogonal electric dipole antennas, one
magnetic search coil antenna and a four-channel digital sampling system,
utilising flexible digital down conversion and filtering together with
state-of-the-art onboard digital signal processing.Comment: 8 pages, 3 figures. Submitted to the DGLR Int. Symposium "To Moon and
Beyond", Bremen, Germany, 2005. Companion paper to arXiv:astro-ph/050921
Plasma Transport in Saturn's LowâLatitude Ionosphere: Cassini Data
An edited version of this paper was published by AGU. Copyright 2019 American Geophysical Union.In 2017 the Cassini Orbiter made the first in situ measurements of the upper atmosphere and ionosphere of Saturn. The Ion and Neutral Mass Spectrometer in its ion mode measured densities of light ion species (H+, H2+, H3+, and He+), and the Radio and Plasma Wave Science instrument measured electron densities. During proximal orbit 287 (denoted P287), Cassini reached down to an altitude of about 3,000 km above the 1 bar atmospheric pressure level. The topside ionosphere plasma densities measured for P287 were consistent with ionospheric measurements during other proximal orbits. Spacecraft potentials were measured by the Radio and Plasma Wave Science Langmuir probe and are typically about negative 0.3 V. Also, for this one orbit, Ion and Neutral Mass Spectrometer was operated in an instrument mode allowing the energies of incident H+ ions to be measured. H+ is the major ion species in the topside ionosphere. Ion flow speeds relative to Saturn's atmosphere were determined. In the southern hemisphere, including near closest approach, the measured ion speeds were close to zero relative to Saturn's corotating atmosphere, but for northern latitudes, southward ion flow of about 3 km/s was observed. One possible interpretation is that the ring shadowing of the southern hemisphere sets up an interhemispheric plasma pressure gradient driving this flow
The Ion Composition of Saturn's Equatorial Ionosphere as Observed by Cassini
An edited version of this paper was published by AGU. Copyright 2018 American Geophysical Union.The Cassini Orbiter made the first in situ measurements of the upper atmosphere and ionosphere of Saturn in 2017. The Ion and Neutral Mass Spectrometer (INMS) found molecular hydrogen and helium as well as minor species including water, methane, ammonia, and organics. INMS ion mode measurements of light ion species (H+, H2+, H3+, and He+) and Radio and Plasma Wave Science instrument measurements of electron densities are presented. A photochemical analysis of the INMS and Radio and Plasma Wave Science data indicates that the major ion species near the ionospheric peak must be heavy and molecular with a short chemical lifetime. A quantitative explanation of measured H+ and H3+ densities requires that they chemically react with one or more heavy neutral molecular species that have mixing ratios of about 100 ppm
Electron Density Dropout Near Enceladus in the Context of Water-Vapor and Water-Ice
On 12 March 2008, the Cassini spacecraft made a close encounter with the Saturnian moon Enceladus, passing within 52 km of the moon. The spacecraft trajectory was intentionally-oriented in a southerly direction to create a close alignment with the intense water-dominated plumes emitted from the south polar region. During the passage, the Cassini Radio and Plasma Wave System (RPWS) detected two distinct radio signatures: 1) Impulses associated with small water-ice dust grain impacts and 2) an upper hybrid (UH) resonance emission that both intensified and displayed a sharp frequency decrease in the near-vicinity of the moon. The frequency decrease of the UH emission is associated with an unexpectedly sharp decrease in electron density from approximately 90 el/cubic cm to below 20 el/cubic cm that occurs on a time scale of a minute near the closest encounter with the moon. In this work, we consider a number of scenarios to explain this sharp electron dropout, but surmise that electron absorption by ice grains is the most likely process
Sex differences in CSF biomarkers for neurodegeneration and blood-brain barrier integrity.
INTRODUCTION:
As cerebrospinal fluid (CSF) neurofilament light protein (NfL) and the CSF/serum albumin ratio (QAlb) are used in the clinical routine, the impact of demographic factors on these biomarkers is important to understand.
METHODS: Participants were derived from two Swedish samples: the populationâbased H70 Study (n = 308, age 70) and a clinical routine cohort (CSF NfL, n = 8995, QAlb, n = 39252, age 0 to 95). In the populationâbased study, QAlb and NfL were examined in relation to sex, cardiovascular risk factors, and cerebral white matter lesions (WMLs). In the clinical cohort, QAlb and NfL sex differences were tested in relation to age.
RESULTS: Men had higher QAlb and NfL concentrations and had higher QAlb and NfL concentrations from adolescence throughout life. NfL was not related to WML, but QAlb correlated positively with WMLs.
DISCUSSION: The CSF NfL sex difference could not be explained by vascular pathology. Future studies should consider using different reference limits for men and women
- âŠ