18 research outputs found
Metal/oxide interfacial effects on the selective oxidation of primary alcohols
A main obstacle in the rational development of heterogeneous catalysts is the difficulty in identifying active sites. Here we show metal/oxide interfacial sites are highly active for the oxidation of benzyl alcohol and other industrially important primary alcohols on a range of metals and oxides combinations. Scanning tunnelling microscopy together with density functional theory calculations on FeO/Pt(111) reveals that benzyl alcohol enriches preferentially at the oxygen-terminated FeO/Pt(111) interface and undergoes readily O–H and C–H dissociations with the aid of interfacial oxygen, which is also validated in the model study of Cu(2)O/Ag(111). We demonstrate that the interfacial effects are independent of metal or oxide sizes and the way by which the interfaces were constructed. It inspires us to inversely support nano-oxides on micro-metals to make the structure more stable against sintering while the number of active sites is not sacrificed. The catalyst lifetime, by taking the inverse design, is thereby significantly prolonged