5,921 research outputs found

    Evaluating advanced search interfaces using established information-seeking model

    No full text
    When users have poorly defined or complex goals search interfaces offering only keyword searching facilities provide inadequate support to help them reach their information-seeking objectives. The emergence of interfaces with more advanced capabilities such as faceted browsing and result clustering can go some way to some way toward addressing such problems. The evaluation of these interfaces, however, is challenging since they generally offer diverse and versatile search environments that introduce overwhelming amounts of independent variables to user studies; choosing the interface object as the only independent variable in a study would reveal very little about why one design out-performs another. Nonetheless if we could effectively compare these interfaces we would have a way to determine which was best for a given scenario and begin to learn why. In this article we present a formative framework for the evaluation of advanced search interfaces through the quantification of the strengths and weaknesses of the interfaces in supporting user tactics and varying user conditions. This framework combines established models of users, user needs, and user behaviours to achieve this. The framework is applied to evaluate three search interfaces and demonstrates the potential value of this approach to interactive IR evaluation

    The Spectral Energy Distribution of Fermi Bright Blazars

    Get PDF
    We have conducted a detailed investigation of the broadband spectral properties of the γ-ray selected blazars of the Fermi LAT Bright AGN Sample (LBAS). By combining our accurately estimated Fermi γ-ray spectra with Swift, radio, infra-red, optical, and other hard X-ray/γ-ray data, collected within 3 months of the LBAS data taking period, we were able to assemble high-quality and quasi-simultaneous spectral energy distributions (SED) for 48 LBAS blazars. The SED of these γ-ray sources is similar to that of blazars discovered at other wavelengths, clearly showing, in the usual log ν-log ν F _ν representation, the typical broadband spectral signatures normally attributed to a combination of low-energy synchrotron radiation followed by inverse Compton emission of one or more components. We have used these SED to characterize the peak intensity of both the low- and the high-energy components. The results have been used to derive empirical relationships that estimate the position of the two peaks from the broadband colors (i.e., the radio to optical, α_(ro), and optical to X-ray, α_(ox), spectral slopes) and from the γ-ray spectral index. Our data show that the synchrotron peak frequency (ν^S _(peak)) is positioned between 10^(12.5) and 10^(14.5) Hz in broad-lined flat spectrum radio quasars (FSRQs) and between 10^(13) and 10^(17) Hz in featureless BL Lacertae objects. We find that the γ-ray spectral slope is strongly correlated with the synchrotron peak energy and with the X-ray spectral index, as expected at first order in synchrotron-inverse Compton scenarios. However, simple homogeneous, one-zone, synchrotron self-Compton (SSC) models cannot explain most of our SED, especially in the case of FSRQs and low energy peaked (LBL) BL Lacs. More complex models involving external Compton radiation or multiple SSC components are required to reproduce the overall SED and the observed spectral variability. While more than 50% of known radio bright high energy peaked (HBL) BL Lacs are detected in the LBAS sample, only less than 13% of known bright FSRQs and LBL BL Lacs are included. This suggests that the latter sources, as a class, may be much fainter γ-ray emitters than LBAS blazars, and could in fact radiate close to the expectations of simple SSC models. We categorized all our sources according to a new physical classification scheme based on the generally accepted paradigm for Active Galactic Nuclei and on the results of this SED study. Since the LAT detector is more sensitive to flat spectrum γ-ray sources, the correlation between ν ^S _(peak) and γ-ray spectral index strongly favors the detection of high energy peaked blazars, thus explaining the Fermi overabundance of this type of sources compared to radio and EGRET samples. This selection effect is similar to that experienced in the soft X-ray band where HBL BL Lacs are the dominant type of blazars

    Synthetic virus-like gene delivery systems

    Get PDF

    Neutron Stars as Type-I Superconductors

    Full text link
    In a recent paper by Link, it was pointed out that the standard picture of the neutron star core composed of a mixture of a neutron superfluid and a proton type-II superconductor is inconsistent with observations of a long period precession in isolated pulsars. In the following we will show that an appropriate treatment of the interacting two-component superfluid (made of neutron and proton Cooper pairs), when the structure of proton vortices is strongly modified, may dramatically change the standard picture, resulting in a type-I superconductor. In this case the magnetic field is expelled from the superconducting regions of the neutron star leading to the formation of the intermediate state when alternating domains of superconducting matter and normal matter coexist.Comment: 4 page
    • …
    corecore