50 research outputs found

    Bright light-emitting diodes based on organometal halide perovskite.

    Get PDF
    Solid-state light-emitting devices based on direct-bandgap semiconductors have, over the past two decades, been utilized as energy-efficient sources of lighting. However, fabrication of these devices typically relies on expensive high-temperature and high-vacuum processes, rendering them uneconomical for use in large-area displays. Here, we report high-brightness light-emitting diodes based on solution-processed organometal halide perovskites. We demonstrate electroluminescence in the near-infrared, green and red by tuning the halide compositions in the perovskite. In our infrared device, a thin 15 nm layer of CH3NH3PbI(3-x)Cl(x) perovskite emitter is sandwiched between larger-bandgap titanium dioxide (TiO2) and poly(9,9'-dioctylfluorene) (F8) layers, effectively confining electrons and holes in the perovskite layer for radiative recombination. We report an infrared radiance of 13.2 W sr(-1) m(-2) at a current density of 363 mA cm(-2), with highest external and internal quantum efficiencies of 0.76% and 3.4%, respectively. In our green light-emitting device with an ITO/PEDOT:PSS/CH3NH3PbBr3/F8/Ca/Ag structure, we achieved a luminance of 364 cd m(-2) at a current density of 123 mA cm(-2), giving external and internal quantum efficiencies of 0.1% and 0.4%, respectively. We show, using photoluminescence studies, that radiative bimolecular recombination is dominant at higher excitation densities. Hence, the quantum efficiencies of the perovskite light-emitting diodes increase at higher current densities. This demonstration of effective perovskite electroluminescence offers scope for developing this unique class of materials into efficient and colour-tunable light emitters for low-cost display, lighting and optical communication applications.This is the author accepted manuscript and will be under embargo until 3/2/15. The final version is published in Nature Nanotechnology: http://www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2014.149.html

    The biological assessment of bodies of water by means of the macrofauna

    No full text

    Implications of catchment hydrology for ecosystems in small streams

    No full text

    Bottom fauna and littoral vegetation fauna in Lake Maarsseveen

    No full text

    Analysis of the macrofauna-community on Stratiotes

    No full text

    Notes on the distribution and ecology of Hirudinea in The Netherlands

    No full text

    Review

    No full text
    corecore