3 research outputs found

    Surface vs diffusion in TDS of hydrogen

    No full text
    The paper addresses the numerical simulation of conditions in which the measurement of thermal desorption spectra of hydrogen (TDS) is carried out. Plane steel samples of 10 mm thickness were used as the specimens for simulation. The skin effect which is observed with standard hydrogen charging of samples was accounted for the initial conditions. The standard diffusion of hydrogen was simulated according to Fick’s law. Solution of the Fick’s equation is obtained by finite element methods using the developed code. The resulting solutions show that standard hydrogen charging can lead to the appearance of an additional TDS peak, even without taking into account the traps. New interpretation of the TDS method for hydrogen dissolved in a solid was suggested

    Three-dimensional modelling of sputtered materials transport in diagnostic ducts of fusion devices

    No full text
    Migration of plasma erosion products in plasma facilities is studied experimentally and numerically within the framework of modelling transport of plasma-facing materials in the diagnostic ducts of fusion devices. Material transport simulation is discussed for two cases of low and high background neutral gas pressures. Monte Carlo software KITe was used to simulate transport at a neutral gas background pressure 0.1-0.5 Pa – typical during steady-state tokamak operation and during pressure pulses caused by edge localized modes (ELMs). The simulation approach was implemented to describe experiments at the MAGNUM-PSI facility. Fluid dynamic code FLUENT is used to simulate transport during pressure surges as high as 1000 Pa, which can occur in case of severe disruptions in tokamak plasma discharges, such as vertical displacement events (VDE) or accidental events. The hydrodynamic approach was verified in simulation of target sputtering in the QSPA plasma gun facility

    Three-dimensional modelling of sputtered materials transport in diagnostic ducts of fusion devices

    No full text
    Migration of plasma erosion products in plasma facilities is studied experimentally and numerically within the framework of modelling transport of plasma-facing materials in the diagnostic ducts of fusion devices. Material transport simulation is discussed for two cases of low and high background neutral gas pressures. Monte Carlo software KITe was used to simulate transport at a neutral gas background pressure 0.1-0.5 Pa – typical during steady-state tokamak operation and during pressure pulses caused by edge localized modes (ELMs). The simulation approach was implemented to describe experiments at the MAGNUM-PSI facility. Fluid dynamic code FLUENT is used to simulate transport during pressure surges as high as 1000 Pa, which can occur in case of severe disruptions in tokamak plasma discharges, such as vertical displacement events (VDE) or accidental events. The hydrodynamic approach was verified in simulation of target sputtering in the QSPA plasma gun facility.<br/
    corecore