126 research outputs found

    GRB Redshift Distribution is Consistent with GRB Origin in Evolved Galactic Nuclei

    Get PDF
    Recently we have elaborated a new cosmological model of gamma-ray burst (GRB) origin (1998, ApJ 502, 192), which employs the dynamical evolution of central dense stellar clusters in the galactic nuclei. Those clusters inevitably contain a large fraction of compact stellar remnants (CSRs), such as neutron stars (NSs) and stellar mass black holes (BHs), and close encounters between them result in radiative captures into short-living binaries, with subsequent merging of the components, thereby producing GRBs (typically at large distances from the nucleus). In the present paper, we calculate the redshift distribution of the rate of GRBs produced by close encounters of NSs in distant galactic nuclei. To this end, the following steps are undertaken: (i) we establish a connection between the parameters of the fast evolving central stellar clusters (i.e. those for which the time of dynamical evolution exceeds the age of the Universe) with masses of the forming central supermassive black holes (SMBHs) using a dynamical evolution model; (ii) we connect these masses with the inferred mass distributions of SMBHs in the galactic nuclei and the redshift distribution of quasars by assuming a certain `Eddington luminosity phase' in their activity; (iii) we incorporate available observational data on the redshift distribution of quasars as well as a recently found correlation between the masses of galaxies and their central SMBHs. The resulting redshift distribution of the GRB rate, which accounts for both fast and slowly evolving galactic nuclei is consistent with that inferred from the BATSE data if the fraction of fast evolving galactic nuclei is in the range 0.016−0.160.016-0.16.Comment: LaTeX, 4 pages (incl. 1 figure), to appear in "After the Dark Ages: When Galaxies Were Young (the Universe at 2<z<5)", eds. S.S. Holt and E.P. Smit

    The Eddington Luminosity Phase in Quasars: Duration and Implications

    Get PDF
    Non-steady and eruptive phenomena in quasars are thought to be associated with the Eddington or super-Eddington luminous stage. Although there is no lack in hypotheses about the total duration of such a stage, the latter remains essentially unknown. We calculate the duration of quasar luminous phase in dependence upon the initial mass of a newborn massive black hole (MBH) by comparing the observed luminosity- and redshift distributions of quasars with mass distribution of the central MBHs in normal galactic nuclei. It is assumed that, at the quasar stage, each MBH goes through a single (or recurrent) phase(s) of accretion with, or close to, the Eddington luminosity. The mass distributions of quasars is found to be connected with that of MBHs residing in normal galaxies by a one-to-one corrrespondence through the entire mass range of the inferred MBHs if the accretion efficiency of mass-to-energy transformation η∌0.1\eta \sim 0.1.Comment: 4 pages, 2 figures, uses aipproc.sty. To appear in "Cosmic Explosions" (Proc. of the 10th Annual October Conference in Maryland, Eds. S.S. Holt and W.W. Zhang

    Vacuum shell in the Schwarzschild-de Sitter world

    Full text link
    We construct the classification scheme for all possible evolution scenarios and find the corresponding global geometries for dynamics of a thin spherical vacuum shell in the Schwarzschild-de Sitter metric. This configuration is suitable for the modelling of vacuum bubbles arising during cosmological phase transitions in the early Universe. The distinctive final types of evolution from the local point of view of a rather distant observer are either the unlimited expansion of the shell or its contraction with a formation of black hole (with a central singularity) or wormhole (with a baby universe in interior).Comment: 15 pages, 8 figure

    Mechanism for the Suppression of Intermediate-Mass Black Holes

    Full text link
    A model for the formation of supermassive primordial black holes in galactic nuclei with the simultaneous suppression of the formation of intermediate-mass black holes is presented. A bimodal mass function for black holes formed through phase transitions in a model with a "Mexican hat" potential has been found. The classical motion of the phase of a complex scalar field during inflation has been taken into account. Possible observational manifestations of primordial black holes in galaxies and constraints on their number are discussed.Comment: 12 pages, 2 figure

    Gamma Ray Bursts from the Evolved Galactic Nuclei

    Get PDF
    A new cosmological scenario for the origin of gamma ray bursts (GRBs) is proposed. In our scenario, a highly evolved central core in the dense galactic nucleus is formed containing a subsystem of compact stellar remnants (CSRs), such as neutron stars and black holes. Those subsystems result from the dynamical evolution of dense central stellar clusters in the galactic nuclei through merging of stars, thereby forming (as has been realized by many authors) the short-living massive stars and then CSRs. We estimate the rate of random CSR collisions in the evolved galactic nuclei by taking into account, similar to Quinlan & Shapiro (1987), the dissipative encounters of CSRs, mainly due to radiative losses of gravitational waves, which results in the formation of intermediate short-living binaries, with further coalescence of the companions to produce GRBs. We also consider how the possible presence of a central supermassive black hole, formed in a highly evolved galactic nucleus, influences the CSR binary formation. This scenario does not postulate ad hoc a required number of tight binary neutron stars in the galaxies. Instead, it gives, for the most realistic parameters of the evolved nuclei, the expected rate of GRBs consistent with the observed one, thereby explaining the GRB appearance in a natural way of the dynamical evolution of galactic nuclei. In addition, this scenario provides an opportunity for a cosmological GRB recurrence, previously considered to be a distinctive feature of GRBs of a local origin only. We also discuss some other observational tests of the proposed scenario.Comment: 25 pages, LATEX, uses aasms4.sty, accepted by Ap

    Swift J164449.3+573451 event: generation in the collapsing star cluster?

    Full text link
    We discuss the multiband energy release in a model of a collapsing galactic nucleus, and we try to interpret the unique super-long cosmic gamma-ray event Swift J164449.3+573451 (GRB 110328A by early classification) in this scenario. Neutron stars and stellar-mass black holes can form evolutionary a compact self-gravitating subsystem in the galactic center. Collisions and merges of these stellar remnants during an avalanche contraction and collapse of the cluster core can produce powerful events in different bands due to several mechanisms. Collisions of neutron stars and stellar-mass black holes can generate gamma-ray bursts (GRBs) similar to the ordinary models of short GRB origin. The bright peaks during the first two days may also be a consequence of multiple matter supply (due to matter release in the collisions) and accretion onto the forming supermassive black hole. Numerous smaller peaks and later quasi-steady radiation can arise from gravitational lensing, late accretion of gas onto the supermassive black hole, and from particle acceleration by shock waves. Even if this model will not reproduce exactly all the Swift J164449.3+573451 properties in future observations, such collapses of galactic nuclei can be available for detection in other events.Comment: 7 pages, replaced by the final versio

    Dynamical Friction of a Circular-Orbit Perturber in a Gaseous Medium

    Full text link
    We investigate the gravitational wake due to, and dynamical friction on, a perturber moving on a circular orbit in a uniform gaseous medium using a semi-analytic method. This work is a straightforward extension of Ostriker (1999) who studied the case of a straight-line trajectory. The circular orbit causes the bending of the wake in the background medium along the orbit, forming a long trailing tail. The wake distribution is thus asymmetric, giving rise to the drag forces in both opposite (azimuthal) and lateral (radial) directions to the motion of the perturber, although the latter does not contribute to orbital decay much. For subsonic motion, the density wake with a weak tail is simply a curved version of that in Ostriker and does not exhibit the front-back symmetry. The resulting drag force in the opposite direction is remarkably similar to the finite-time, linear-trajectory counterpart. On the other hand, a supersonic perturber is able to overtake its own wake, possibly multiple times, and develops a very pronounced tail. The supersonic tail surrounds the perturber in a trailing spiral fashion, enhancing the perturbed density at the back as well as far front of the perturber. We provide the fitting formulae for the drag forces as functions of the Mach number, whose azimuthal part is surprisingly in good agreement with the Ostriker's formula, provided Vp t=2 Rp, where Vp and Rp are the velocity and orbital radius of the perturber, respectively.Comment: 28 pages, 9 figures, accepted for publication in Astrophysical Journa
    • 

    corecore